ANÁLISIS MULTIVARIADO EN LA INVESTIGACIÓN PSICOLÓGICA: Modelado Predictivo y Causal con SPSS y AMOS

Erick Roth Unzueta
ANÁLISIS MULTIVARIADO EN LA INVESTIGACIÓN PSICOLÓGICA:

Modelado Predictivo y Causal con SPSS y AMOS

Eric Roth Unzueta

La Paz, Bolivia, 2012
Titulo: ANÁLISIS MULTIVARIADO EN LA INVESTIGACIÓN PSICOLÓGICA: Modelado Predictivo y Causal con SPSS y AMOS
Autor: © Erick Roth Unzueta
Diseño y Diagramación: Publicaciones U.C.B., Pedro Durán Tarifa
Impresión: SOIPA Ltda.
Depósito Legal: 4-1-3719-12
Primera edición: diciembre 2012
Impreso en Bolivia
A mi familia, en un afán de compensar todas las ausencias y silencios obligados en la realización de esta obra.
CONTENIDO

EL PROPÓSITO DEL LIBRO .. 4

CAPÍTULO I. ANÁLISIS EXPLORATORIO DE LOS DATOS (AED) ... 5
Cálculo del Análisis Exploratorio de los Datos usando el SPSS ... 10
Interpretación de la Exploración de Datos ... 12
Métodos Gráficos ... 15

CAPÍTULO II. LA CORRELACIÓN EN LA LÓGICA DE LOS DISEÑOS MULTIVARIADOS 22
Correlación y Covarianza .. 25
Tipos de Correlación .. 27
Correlación Parcial ... 28
Cálculo de la Correlación Parcial usando SPSS ... 30
Interpretación de los Resultados ... 32
Correlación Semiparcial ... 34
Tipos de Correlaciones Semi-parciales .. 38
Cálculo de la Correlación Semi-parcial usando SPSS .. 38
Interpretación de los Resultados ... 41

CAPÍTULO III. ANÁLISIS DE REGRESIÓN MÚLTIPLE .. 44
Regresión Lineal .. 44
Regresión Múltiple ... 45
Diagnóstico de los datos ... 48
Cálculo de la regresión múltiple usando SPSS ... 50
Interpretación de los Resultados ... 54
Diagnóstico de los Residuos .. 59
Diagnóstico de Datos Atípicos ... 62
Reporte de resultados ... 63

CAPÍTULO IV. REGRESIÓN LOGÍSTICA ... 64
Razón de Probabilidad u Odds Ratio ... 65
El Cálculo de la Regresión Logística ... 68
Cálculo de la regresión logística usando SPSS .. 71
Interpretación de Resultados ... 75
Bloque 0: Bloque inicial ... 77
Bloque 1: Método = Por pasos hacia adelante (Wald) 80

CAPÍTULO V. ANÁLISIS FACTORIAL EXPLORATORIO (AFE) 87
Análisis de Extracción por Factores Comunes (EFC) 89
Análisis de Extracción por Componentes Principales (ACP) 89
Cálculo del Análisis Factorial Exploratorio usando el SPSS 90
Interpretación de la Estructura Factorial ... 97
Cálculo del Análisis Factorial Exploratorio usando SPSS 99
Matriz de Puntuaciones Factoriales .. 109
Interpretación de Resultados en el AFE ... 110

CAPÍTULO VI. INTRODUCCIÓN AL MODELADO DE ECUACIONES ESTRUCTURALES (MEE) ... 118
Antecedentes del MEE ... 119
Relevancia del MEE ... 121
Modelos y Ecuaciones .. 121
Diagrama de Ruta .. 122
La estructura del modelo ... 126
Identificación del Modelo .. 127
Estimación de parámetros en el MEE ... 131
Supuestos para la aplicación del MEE .. 131
Herramientas informáticas en el MEE ... 133
Modelando con AMOS .. 135
Calculando los Estimados del Modelo .. 145
Evaluación del Modelo ... 153
Características del Modelo Reformulado .. 163
Parámetros Estimados del Modelo Reformulado 164
Resumen de Ajuste del Modelo Reformulado 165

CAPÍTULO VII. ANÁLISIS FACTORIAL CONFIRMATORIO (AFC) 168
Similitudes y diferencias entre AFE y AFC ... 169
Un Ejemplo de Aplicación del AFC de Primer Orden 171
El Modelo Hipotético ... 173
Evaluación de la bondad de Ajuste ... 178
Primera Reformulación del Modelo .. 182
Segunda Reformulación del Modelo ... 183
AFC de Segundo Orden ... 187

CAPÍTULO VIII. ANÁLVIS DE LA VALIDEZ
DE UN MODELO MULTICAUSAL .. 188
 Ejemplo de un Modelo Multicausal ... 188
 Validez Confirmatoria de la Forción Métrica del Modelo 191
 AFC del Modelo Instrumental ... 202
 Validez del Modelo Multicausal ... 209
 Consideraciones Finales .. 217

REFERENCIAS .. 219
La evidente complejidad que encaran los investigadores al tratar de desentrañar los misterios de la porción de realidad que les toca estudiar, no admite más la aplicación exclusiva de diseños univariados simples cuya capacidad de análisis limita el estudio de los efectos atribuibles a las múltiples influencias concurrentes de las variables o factores interdependientes. Esto ciertamente obliga a los investigadores a explorar nuevas perspectivas metodológicas capaces de ofrecer procedimientos más sofisticados que den cuenta de tal complejidad.

Tradicionalmente, el análisis causal (o multicausal) ha sido encarado desde perspectivas experimentales que suponen la manipulación directa e intencionada de la variable independiente. Una aproximación tal restringe enormemente la obtención de explicaciones, sobre todo en circunstancias en las que dicha manipulación resulta técnicamente inviable. Los nuevos diseños multivariados intentan suplir esta dificultad sustituyendo la manipulación directa de las variables independientes por manipulaciones matemáticas, lo que hace de estas aplicaciones excesivamente dependientes de la estadística inferencial y de muestras poblacionales grandes. Si bien los supuestos que se encuentran detrás de estos diseños son aún materia de debate
metodológico, constituyen opciones válidas en la investigación de las ciencias del comportamiento.

Por ello, *Análisis Multivariado en la Investigación Psicológica: Modelado Predictivo y Causal con SPSS y AMOS*, es un libro de texto dirigido preferentemente a los investigadores de la psicología, interesados en el análisis de procesos multicausales, aunque puede interesar también a especialistas de otras disciplinas afines con intereses similares. Se trata de un libro que busca familiarizar al estudiante con una serie de técnicas cuantitativas que tienen propósitos inferenciales en la lógica de la múltiple causalidad. Por lo tanto, los procedimientos que presenta se describen como multivariados.

El libro ha sido desarrollado de manera tal que se minimiza la necesidad de acudir a complejas formas matemáticas o estadísticas para entender los principios que subyacen a las diferentes técnicas, así como para llevar a cabo el desarrollo mismo de sus procesos. A lo largo de toda la obra, el autor acompaña la descripción de los procedimientos con ejemplos concretos rescatados de su propio trabajo investigativo, apoyándose, para el manejo y procesamiento de los datos en el empleo de los conocidos paquetes estadísticos relacionados, el SPSS y AMOS, éste último para el caso del modelado de ecuaciones estructurales. Por lo tanto, la ejemplificación de los procedimientos metodológicos permite también fortalecer el uso de tales instrumentos.

Estas características hacen que el libro sea un buen auxiliar para el investigador y para el estudiante de doctorado que aspira a serlo, pues pretende acompañarlo en el tratamiento y comprensión de temas puntuales pero absolutamente fundamentales en el proceso del modelado cuantitativo.

La secuencia de los contenidos del libro, reflejan el recorrido necesario que debe hacer el aprendiz de investigador, desde los elementos básicos hasta las complejidades del modelado estructural. Así, en el primer capítulo se describen los diferentes cursos de acción para explorar los datos a la luz de los criterios estadísticos de normalidad de la distribución y para asegurar su pertinencia a la hora del análisis cuantitativo. En el siguiente capítulo se discute el papel de la correlación como insumo de la predicción y la causación a partir de sus modalidades parcial y semiparcial como mecanismos de control. El tercer y cuarto capítulos se concentran en la regresión lineal múltiple y la
regresión logística, respectivamente. Ambos capítulos buscan informar sobre los procedimientos estadísticos para estimar la probabilidad de ocurrencia de un proceso en función de ciertas variables conocidas como predictores. La regresión logística hace lo propio pero para predecir una variable dependiente categórica con características dicotómicas. El capítulo cinco aborda el análisis factorial exploratorio, como método de reducción de datos, bajo la modalidad de los componentes principales y los últimos tres capítulos dan cuenta del modelado de ecuaciones estructurales, el análisis factorial confirmatorio y el modelado para determinar la validez multicausal.

Finalmente, si bien este trabajo pretende llenar un vacío circunstancial determinado por la ausencia de literatura especializada en nuestro medio, no refleja nada que no se haya publicado en el contexto internacional. En este sentido, ha recibido aportes sustanciales de diversos autores tales como Barbara Byrne (2010), Schumacker y Lomax (2010), Bentler (2005) y otros cuyas contribuciones se han constituido en la fundación para la investigación multivariada en psicología.

ER

La Paz, febrero de 2012
En el contexto de una investigación cuantitativa, el primer paso, sin duda fundamental, tiene que ver con el diagnóstico de los datos disponibles. El AED proporciona métodos sencillos para organizar y preparar los datos, detectar problemas en el diseño y recogida de datos, tratamiento y evaluación de datos ausentes, identificación de casos atípicos y comprobación de los supuestos subyacentes en la mayor parte de las técnicas multivariadas. El examen previo de los datos es una condición necesaria, que suele ser omitida por los investigadores. Las tareas implicadas en dicho examen pueden parecer innecesarias pero son parte esencial de cualquier análisis estadístico riguroso.

La realización de un A.E.D. supone transitar por las siguientes etapas:

a) Preparar los datos para hacerlos accesibles a cualquier técnica estadística.

b) Realizar un examen gráfico de la naturaleza de las variables individuales que se tienen que analizar y llevar a cabo un análisis descriptivo que permita cuantificar dichos aspectos gráficos de los datos.
c) Evaluar, si fuera necesario, algunos supuestos básicos subyacentes a muchas técnicas estadísticas como, por ejemplo, la normalidad, linealidad y la homocedasticidad.

d) Identificar los posibles casos atípicos (outliers) y evaluar el impacto potencial que puedan tener en análisis estadísticos posteriores.

e) Evaluar el impacto potencial que pueden tener los datos faltantes (missing) sobre la representatividad de los datos analizados

Por lo tanto, el AED nos permite conocer los indicadores descriptivos de cada variable, lo que debe incluir la media, la desviación típica y el número de casos válidos, linealidad, homogeneidad entre grupos, homocedasticidad, simetría y curtosis, etc. Debe recordarse que, por lo general, los datos a ser analizados con cualquier procedimiento estadístico inferencial, deben aproximarse a la normalidad (DSSC, 1997).

El SPSS permite un análisis exploratorio de datos exhaustivo, ofreciendo métodos estadísticos así como gráficos. Las técnicas gráficas suponen la construcción de histogramas, diagramas de tallo y hojas, diagramas de cajas y de cuartiles, entre otros, que permiten el estudio de la normalidad de todas las variables del estudio. El método gráfico más simple para diagnosticar la normalidad es la comprobación visual del histograma que compara los valores de los datos observados con una distribución normal. No obstante, este método no es recomendable para muestras pequeñas. Como alternativa se sugiere la realización de diagramas de cuartiles (Q-Q) que comparan, en un sistema de coordenadas cartesianas, los cuartiles observados (eje X) con los cuartiles esperados (eje Y)\(^1\).

Si la distribución es normal, el diagrama adoptará una tendencia que iguala la línea recta diagonal; cualquier desviación de dicha tendencia señalaría una distribución no normal. En la Figura 1.1 se muestran un diagrama de cuartiles.

Otra prueba gráfica de la normalidad es la simetría de la distribución. Una distribución es simétrica cuando existe el mismo número de valores a ambos lados de la media, lo que

\(^1\) El diagrama Q-Q permite observar cuán cerca está la distribución de un conjunto de datos a una distribución ideal.
supone que exista el mismo número de desviaciones con signo positivo y negativo.

Figura 1.1. Diagrama de cuantiles para determinar la normalidad de una distribución cualquiera

Figura 1.2. Ejemplos de distribuciones con diferentes valores de simetría

La asimetría positiva se da cuando la cola hacia la derecha de la media es más larga. La asimetría negativa, en consecuencia está determinada por la condición contraria (ver Figura 1.2).

La curtosis, por otra parte, es una medida de la forma o concentración de la distribución que describe la magnitud del agrupamiento de los datos en torno a la media y su área central. Los valores de asimetría y curtosis aceptados como indicadores de normalidad se encuentran entre -1 y +1.
Para el caso de la curtosis, los valores altos determinan la leptocurtosis, mientras que los valores pequeños señalan una distribución platicúrtica (ver Figura 1.3).

![Diagrama de distribuciones]

Figura 1.3. Ejemplos de distribuciones con diferentes valores de curtosis

El método estadístico para el AED o prueba de contraste en el SPSS incluye los siguientes indicadores:

a) Medidas de tendencia central (media aritmética, mediana, media truncada, estimadores M);

b) Medidas de dispersión (varianza, desviaciones típicas);

c) Medidas de forma (simetría y curtosis) y;

d) La prueba de normalidad de Kolmogorov - Smirnov.

e) La prueba de Shapiro - Wilk.

Entre las medidas de tendencia central, se destaca en primer lugar la media recortada, es decir, la media de la variable eliminando el 5 por ciento de las colas inferior y superior de la distribución. De esta forma se eliminan valores extremos y es por tanto un estadístico más robusto. En segundo término debe ponerse más atención en los "estimadores M" que constituyen ponderaciones de cada valor de la distribución determinada por su posición con respecto a su centro (mediana). Las observaciones centrales se ponderan con el máximo valor (1.0) disminuyendo los coeficientes de ponderación a medida que las observaciones se alejan del centro. Existen distintas formas de ponderar: Humbert (pondera con valor uno, los valores situados a menos de 1,339
de la mediana), Tukey (pondera con cero los valores situados a 4,385 de la mediana), Andrews (pondera con cero los situados a 4,2066 de la mediana).

Por su parte, las medidas de dispersión calculan la representatividad de una medida de posición, para esto es preciso cuantificar la distancia entre los diferentes valores de la distribución respecto a dicha medida. A esta distancia se denomina variabilidad o dispersión de la distribución y su propósito es conocer hasta qué punto para una determinada distribución de frecuencias, las medidas de tendencia central o de posición son representativas como síntesis de toda la información de la distribución. Entonces, medir la representatividad de una medida de posición equivale a cuantificar la separación de los valores de la distribución respecto a dicha medida. A la mayor o menor separación de los valores de una distribución respecto del valor de posición se le llama dispersión o variabilidad (Martín, 2004).

Las medidas de forma (simetría y curtosis) ya explicadas anteriormente, aportan también con elementos claros para determinar la normalidad de una distribución.

En la prueba de normalidad de Kolmogorov – Smirnov, la hipótesis nula que se pone a prueba es que los datos proceden de una población con distribución normal. Calcula la distancia máxima entre la función de distribución empírica de la muestra seleccionada y la teórica, en este caso la normal. Por lo tanto, se rechaza la hipótesis nula cuando el valor de este estadístico es alto. Si la distancia calculada es mayor que la encontrada en las tablas, fijando un nivel de significancia, rechazaremos el modelo. Se recomienda esta prueba cuando se cuenta con menos de 16 datos.

La prueba de contraste de Shapiro – Wilkes, en términos generales, es la más conveniente cuando se dispone de muestras pequeñas ($n < 30$), mientras que el contraste de Kolmogorov-Smirnov, en la versión modificada de Lilliefors, es adecuado para muestras grandes. Shapiro - Wilkes evalúa la distribución del estadístico bajo hipótesis de normalidad y proporcionan un test que rechaza dicha normalidad cuando el ajuste es bajo, es decir, cuando el resultado ofrece valores pequeños.
Cálculo del Análisis Exploratorio de los Datos usando el SPSS

Con el propósito de ilustrar el empleo del SPSS en la exploración de los datos, y a modo de ejemplo, tomemos una variable cualquiera para que pueda ser sometida a la rutina exploratoria. No debe olvidarse que dicho análisis debe ser ejecutado con todas las variables que forman parte de la investigación.

![Table and Diagram]

Figura 1.4. Ruta de acceso a la operación “explorar” desde el editor de datos del programa SPSS

En primer lugar, en el editor de SPSS, selecciónese “Analizar”, luego “Descriptivos” y finalmente “Explorar”, tal como se muestra en la Figura 1.4. Esta operación despliega el cuadro de diálogo de la Figura 1.5.

Selecciónese a continuación, de la lista de variables, la que deberá ser sometida a exploración; en nuestro ejemplo, elegimos COMPTOT y la arrastramos a la casilla de “Lista Dependientes”. En la sección “Mostrar” (Display), por defecto, se sugiere “Ambos” (análisis estadístico y gráfico). Posteriormente, elijase “Explorar: Estadísticos” y en el respectivo cuadro de diálogo (ver Figura 1.5) márquese “Descriptivos”, “Estimadores Robustos Centrales M” y “Valores Atípicos” y ciérrese el cuadro pinchando en “Continuar” (Figura 1.6).
Figura 1.5. Cuadro de diálogo para el ingreso de la variable que debe ser explorada

Figura 1.6. Cuadro de diálogo para definir los estadísticos más aconsejables para el análisis

En el cuadro de "Explorar: Gráficos" en la sección de "Diagramas de Caja" (Boxplot), elijase "Dependientes Juntas" (Dependent together); en la sección "Descriptivos", selecciónese "Tallo y hojas" e "Histograma" y luego "Gráficos con pruebas de normalidad". Finalmente, elijase "Continuar" (Figura 1.7).

En el botón "Opciones" del cuadro de diálogo "Explorar", en la sección de "Valores perdidos", la opción "excluir casos según lista" queda seleccionada por defecto.
Interpretación de la Exploración de Datos

Al presionar "OK" en el cuadro de diálogo principal, el programa despliega las tablas y gráficos siguiendo la secuencia que se muestra a continuación\(^2\). En la Tabla 1.1 se resume la información sobre los casos válidos y los faltantes. Nuestra variable que sirve de ejemplo arrojó 374 casos válidos y 54 faltantes, de esto se desprende que el análisis procesará con los 374 casos, omitiéndose los faltantes.

| Tabla 1.1. |
| Información descriptiva sobre casos válidos y faltantes en la distribución |

<table>
<thead>
<tr>
<th></th>
<th>Valid</th>
<th>Missing</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>Percent</td>
<td>N</td>
</tr>
<tr>
<td>COMPTOT</td>
<td>374</td>
<td>87.4%</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>428</td>
<td>100.0%</td>
<td></td>
</tr>
</tbody>
</table>

\(^2\) El tipo de análisis depende de la escala con que se midió la variable analizada. Se asume que las medidas más informativas son las que utilizan escalas de razón o intervalo, en cambio las que generan menos información son las ordinales y nominales.
Tabla 1.2.
Indicadores cuantitativos que ofrecen información acerca de la normalidad de la distribución

<table>
<thead>
<tr>
<th>Descriptivos</th>
<th>Estadística</th>
<th>Std. Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMPTOT Mean</td>
<td>4.209</td>
<td>.0357</td>
</tr>
<tr>
<td>95% Confidence Interval for Mean</td>
<td>4.139</td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>4.279</td>
<td></td>
</tr>
<tr>
<td>Upper Bound</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5% Trimmed Mean (media recortada el 5%)</td>
<td>4.221</td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>4.227</td>
<td></td>
</tr>
<tr>
<td>Variance</td>
<td>.477</td>
<td></td>
</tr>
<tr>
<td>Std. Deviation</td>
<td>.6905</td>
<td></td>
</tr>
<tr>
<td>Minimum</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>Maximum</td>
<td>6.0</td>
<td></td>
</tr>
<tr>
<td>Range</td>
<td>4.8</td>
<td></td>
</tr>
<tr>
<td>Interquartile Range</td>
<td>.9</td>
<td></td>
</tr>
<tr>
<td>Skewness</td>
<td>-.341</td>
<td>.126</td>
</tr>
<tr>
<td>Kurtosis</td>
<td>2.739</td>
<td>.252</td>
</tr>
</tbody>
</table>

La Tabla 1.2 resume la totalidad de los datos de interés: nótese que la media de la variable COMPTOT es de 4.209 y su mediana es 4.227. Cuando la media es igual o similar a la mediana asumimos que la distribución es simétrica. Por lo tanto, esta distribución es simétrica y unimodal (de un solo modo) tal y como refleja su histograma (ver Figura 1.8). Esta tabla ofrece también la media recortada al 5 por ciento (4.221). Este valor al ser contrastado con los llamados "Estimadores M", ofrece indicadores de simetría. Cuanto más discrepanse sean dichos estimadores con el valor de la media recortada, más asimétrica es la distribución. Los estimadores M son cuatro: el Huber, el bi-ponderado de Tukey (Tukey’s Biweight), Hampel y Andrews’ Wave. Adviértase en la Tabla 1.3 siguiente, que el valor de la media recortada es similar o muy parecido al que presentan los Estimadores M mencionados:

3 Media recortada al 5% es el valor de la media omitiendo el 5% de los casos que incluyen los valores más bajos y más altos de la distribución.
El SPSS calcula también la prueba de normalidad de Kolmogorov-Smirnov así como el nivel de significación de Lilliefors. Nótese que la Tabla 1.4 no incorpora el estadístico de Shapiro-Wilk puesto que la muestra empleada es mayor de 50 casos.

En el test de Kolmogorov-Smirnov la hipótesis nula que se pone a prueba es que los datos proceden de una población con distribución normal frente a una alternativa de que no es así. Este contraste calcula la distancia máxima entre la función de distribución empírica de la muestra y la teórica. Si la distancia calculada es mayor que la encontrada en las tablas, fijado un nivel de significación, se rechaza el modelo normal. Por lo tanto, el resultado deseable es el NO rechazo de la hipótesis de normalidad en ambas pruebas de contraste.

De esta manera, en el caso de nuestro ejemplo, un nivel de significación de p = .046 nos permite rechazar la hipótesis de la
normalidad ya que el estadístico es menor al nivel de probabilidad 0.05. Por lo tanto, no podemos postular una distribución normal de COMPTOT.

Métodos Gráficos

Entre los procedimientos de inspección visual de la normalidad de los datos, podemos señalar los siguientes: el histograma, el diagrama de tallo y hojas, el diagrama de cajas y los gráficos Q-Q. Veamos a continuación la información a la que permiten acceder.

a) Histograma. En primera instancia, se puede acudir al histograma para advertir la forma general de la distribución. En nuestro ejemplo, la figura permite advertir cierta asimetría negativa corroborando, de esta manera, el dato estadístico confrontado en la tabla de "descriptivos". Asimismo, el histograma permite confirmar también la configuración leptocúrtica de la distribución.

![Histograma](image)

Figura 1.8. Histograma para advertir la forma general de la distribución

b) Diagrama de Tallo y Hojas. El diagrama de tallo y hojas (*Stem-and-Leaf Plot*), por su parte, es un histograma que conserva la información numérica. Permite ver los datos como un
todo y advertir cuán aproximadamente simétricos son éstos. Informa sobre qué tan dispersos están los datos, si surgen valores no esperados más frecuentes, sobre qué tan alejados se encuentran unos valores respecto a otros y el grado de concentración de los mismos (Tukey, 1977).

Para construir un diagrama de tallo y hojas se debe proceder de la siguiente manera: El tallo se forma con el (los) primer(os) dígito(s) del dato, mientras que la hoja se forma con los demás dígitos siguientes. Por ejemplo, el valor numérico 458 se dividiría en 45/8 como se muestra a continuación: 45 conforma el tallo y 8 se convierte en hoja.

<table>
<thead>
<tr>
<th>COMPTOT Stem-and-Leaf Plot</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency Stem & Leaf</td>
</tr>
<tr>
<td>2.00 Extremes (<2.0)</td>
</tr>
<tr>
<td>3.00</td>
</tr>
<tr>
<td>2 . 3</td>
</tr>
<tr>
<td>8.00 2 . 799</td>
</tr>
<tr>
<td>40.00 3 . 055556666666666</td>
</tr>
<tr>
<td>74.00 3 . 000000000000000000</td>
</tr>
<tr>
<td>118.00 4 . 0555555555555555555555555</td>
</tr>
<tr>
<td>75.00 4 . 0555555555555555555555555</td>
</tr>
<tr>
<td>46.00 5 . 0555555555555555555555555</td>
</tr>
<tr>
<td>7.00 5 . 578</td>
</tr>
<tr>
<td>1.00 6 . 6</td>
</tr>
</tbody>
</table>

Stem width: 1.0
Each leaf: 2 case(s)
& denotes fractional leaves.

Figura 1.9. Diagrama de tallo de la variable COMPTOT utilizado en nuestro ejemplo

Con propósitos ilustrativos tomemos como ejemplo adicional simplificado, la distribución de los siguientes 20 valores de dos dígitos:

82 74 88 66 58 74 78 84 96 76 62 68 72 92 86 76 52 76 82 78

En primera instancia, debe identificarse los valores según a qué grupos pertenecen. Así, podemos encontrar valores que pertenecen al grupo de los 50 (52, 58), hay valores que pertenecen al grupo de los 60 (62, 66, 68); hay valores que pertenecen al grupo de los 70 (72, 74, 74, 76, 76, 78, 78) y así sucesivamente. Por lo tanto, tenemos grupos de 50, 60, 70, 80 y 90.
El primer dígito de cada valor debe utilizarse como tallo y el segundo como hoja. Los valores de tallo (el primer dígito) deben ser dispuestos verticalmente, de la manera siguiente:

5
6
7
8
9

En segundo lugar, colóquese al lado de cada valor de tallo su hoja correspondiente, es decir el segundo dígito de cada valor, tal como se muestra a continuación. Nótese que al valor de 5 (tallo), se añade en la misma fila, todos los segundos dígitos que acompañan al valor 5; es decir, como entre los 20 valores arriba enlistados se leen las cifras 58 y 52, corresponde incluir como hojas del tallo 5 al 8 y al 2. Lo propio se realiza con los demás valores del tallo:

5 | 8 2
6 | 6 2 8
7 | 4 4 6 6 2 6 6 8
8 | 2 8 4 6 2
9 | 6 2

El diagrama de tallo y hojas facilita la exploración de los datos, permitiéndonos obtener u observar lo siguiente:

- El centro de la distribución o mediana.
- La forma general de la distribución; es decir, si es simétrica y si las porciones a cada lado del centro son imágenes espejos de las otras. Si resulta sesgada a la izquierda (si la cola izquierda o los valores menores es mucho más larga que los de la derecha o valores mayores), o si es sesgada a la derecha, con una tendencia contraria a lo antes descrito.
- Claras desviaciones de la forma global de la distribución que se presentan de dos maneras; como observaciones individuales que caen muy por fuera del patrón general de los datos, conocidos también como datos atípicos o “outliers” y como vacíos en la distribución o “gaps”.

La principal ventaja del diagrama de tallo y hojas es que resulta muy fácil de construir manualmente. Sin embargo, el gráfico es
tosco y no sirve para presentaciones definitivas. Solo es funcional cuando el número de observaciones no es demasiado grande.

c) **Diagrama de Cajas y Bigotes.** Este diagrama permite **representar** gráficamente un conjunto de estadísticos descriptivos. Permite detectar datos atípicos (outliers) y asimetrías de la distribución ya que el gráfico se divide en cuatro áreas de igual frecuencia. Ofrece un resumen de la información cuantitativa más relevante de la distribución sin que los datos aparezcan (Martín, 2004).

![Diagrama de Cajas y Bigotes](image)

Figura 1.10. Diagrama de Cajas y Bigotes para apreciar valores máximos y mínimos, la ubicación de los datos, el valor de la mediana y los casos atípicos.

En la Figura 1.10, la longitud de la caja representa el rango intercuartílico (RIC = R3 - R1) que indica la dispersión de los datos centrales; la caja incluye los valores en Q1 y Q3, por tanto, en el rectángulo se encuentra el 50 por ciento de los datos. En otras palabras, si se posee dos distribuciones, aquella que exhiba un RIC mayor, es la que presenta los datos más dispersos. Por otro lado, si la mediana que mide la tendencia central, indicando el centro de los datos, se encuentra como debe ser, en la mitad de la distribución, entonces se trata de una distribución simétrica; lo contrario indicaría asimetrías tanto positivas como negativas dependiendo de la dirección del desplazamiento. La longitud
de la caja (si es más rectangular que cuadrada) y de las patillas o bigotes, indicaría el estado de la curtosis en la distribución. Mientras más alargadas, seguramente estaremos ante una distribución mesocúrtica.

Finalmente, los puntos que se identifican fuera de la caja indican los casos atípicos (outliers), estos pueden ser mínimos o máximos, dependiendo de si se sitúan en la parte inferior fuera de la caja o en la parte superior. En nuestro ejemplo, el diagrama de cajas (ver Figura 1.10) muestra la existencia de dos valores atípicos (166 y 415), ambos de bajo valor. Este hecho puede ser el responsable del relativamente alto nivel de curtosis de la variable (2.739) registrado.

d) Gráficos Q-Q (Cuantil – Cuantil). Los diagramas de cuantiles comparan en un sistema de coordenadas cartesianas, los cuantiles de la muestra (eje X) con los cuantiles esperados bajo la hipótesis normalidad. En un gráfico Q-Q normal, cada valor observado es comparado con la puntuación que teóricamente le correspondería a ese valor en una distribución normal estándar. Así, en el eje de las abscisas están representados los valores observados, ordenados de menor a mayor y en el eje de las ordenadas se muestran las puntuaciones típicas normales. Si la distribución de partida es normal, dichos diagramas tenderán a ser rectas que pasan por el origen. Cuanto más se desvien de una recta, menos normales serán los datos (Figueras y Gargallo, 2003). En la Figura 1.11 se ilustra un diagrama Q-Q sobre la base de la distribución proporcionada por nuestro ejemplo (variable COMPTOT).

La normalidad de los datos será perfecta cuando el gráfico de los puntos en la línea de tendencia resulte ser una línea recta situadas sobre la diagonal del primer cuadrante.

En la Figura 1.12 se exibien las diferentes expresiones gráficas que podría proporcionar el diagrama Q-Q, dando a conocer las características de la distribución:

Un gráfico Q-Q normal sin tendencia muestra las diferencias entre la puntuación típica observada de cada valor y su correspondiente puntuación típica normal. Muestra las distancias verticales existentes entre cada punto del gráfico y la recta diagonal. En la abscisa se representan los valores observados y en la ordenada el tamaño de la diferencia entre las puntuaciones
típicas observadas y las esperadas. Si la muestra procede de una distribución normal, las diferencias deben situarse alrededor del valor cero (línea recta horizontal). Nótese que en el caso de nuestro ejemplo, que la variable analizada tiene, en general, una distribución normal.

Figura 1.11. Gráfico Q-Q (Cuantil - Cuantil) que compara los valores teóricos esperados con los observados

Figura 1.12. Tipología del diagrama Q-Q y sus resultantes según las características de la distribución
Figura 1.13. Diagrama Q-Q normal sin tendencia para la variable COMPTOT
CAPÍTULO II

LA CORRELACIÓN EN LA LÓGICA DE LOS DISEÑOS MULTIVARIADOS

Es probable que la especial atención otorgada por la ciencia a la correlación se deba en parte a que la naturaleza haya sido concebida como una multiplicidad de fuerzas que se encuentran indefectiblemente interrelacionadas y que el avance en su conocimiento equivale a la capacidad que tengamos para cuantificar tales interrelaciones. De esta manera, la utilización de la correlación se ha generalizado a todos los ámbitos disciplinarios y ha ido ganando popularidad entre los investigadores y desarrollando mayor complejidad en sus aplicaciones matemáticas.

La práctica de la correlación tiene un largo recorrido en la estadística desde que Francis Galton la conceptualizara y desde que Karl Pearson, a finales del siglo XIX derivara su fórmula y la extendiera para el cálculo de la regresión. A partir de entonces y sobre esta base, Spearman, en los albores del siglo XX, concibió y desarrolló el análisis factorial. Actualmente, la correlación, la regresión y el análisis factorial son elementos inseparables en la determinación de los vínculos entre variables y la covarianza. Así, la correlación permite estudiar las relaciones o asociaciones simples entre variables, facilita la explicación y la predicción (a través de la regresión) de unas variables con respecto a otras y
también permite hacer estimaciones acerca de la confiabilidad y validez de las medidas.

Las aplicaciones de la correlación se han extendido a su vez a la construcción de una serie de otros modelos metodológicos más complejos, convirtiéndolos en instrumentos realmente efectivos. Sin embargo, su empleo debe estar libre de las circunstancias que interfieren o limitan su efectividad. Schumacker y Lomax (2010) hacen un recuento de los factores que afectan los coeficientes de correlación y los hacen inaplicables para nuestros propósitos. Las siguientes son restricciones que deben ser tomadas en cuenta:

a) **El nivel de medida.** Los cuatro tipos de medidas conocidas (nominal, ordinal, intercalar y de razón) pueden ser consideradas por los diseños multivariados. Sin embargo, dado que el coeficiente producto momento de Pearson (r), la regresión, el análisis de ruta, el análisis factorial y las ecuaciones estructurales demandan un rango suficientemente amplio de valores para introducir varianza, es aconsejable que la variable sea medida al menos en una escala intercalar. Al aumentar la homogeneidad de los sujetos, las varianzas disminuyen, lo que reduce también el valor de la correlación. De esta manera, la escala elegida afecta las medias, la varianza y también la correlación. Parecería conveniente, iniciar el proceso haciendo una prueba exploratoria de normalidad para los datos, incluyendo la verificación de la simetría y la curtosis (véase Capítulo I del presente volumen).

b) **Ausencia de linealidad.** La correlación por lo general establece la relación lineal entre dos variables. Es posible entonces que una relación no lineal (o curvilínea) señale la ausencia de la correlación. Por ello deberá comprobarse la linealidad de los puntajes, lo que puede hacerse graficando los puntos en el plano cartesian.

c) **Los valores faltantes (o Missing Values).** Una correlación en la que faltan algunos de los datos asignados a una de las variables puede afectar dramáticamente el coeficiente resultante. A manera de ejemplo considérese el presentado por Schumacker y Lomax (2010). En el primer caso, la correlación se calcula con un conjunto de valores completos para ambas
variables relacionadas. El coeficiente resultante es claramente significativo\(^1\). Sin embargo, en el caso de los datos faltantes, la ausencia de tan solo tres de ellos en la variable \(X\) es suficiente como para que la correlación no sea significativa (ver Tabla 2.1).

Tabla 2.1.

Demostración de la influencia directa de los datos faltantes sobre el resultado de la correlación

<table>
<thead>
<tr>
<th>Datos completos</th>
<th>Datos Faltantes</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Y)</td>
<td>(X)</td>
</tr>
<tr>
<td>8.00</td>
<td>6.00</td>
</tr>
<tr>
<td>7.00</td>
<td>5.00</td>
</tr>
<tr>
<td>8.00</td>
<td>4.00</td>
</tr>
<tr>
<td>5.00</td>
<td>2.00</td>
</tr>
<tr>
<td>4.00</td>
<td>3.00</td>
</tr>
<tr>
<td>5.00</td>
<td>2.00</td>
</tr>
<tr>
<td>3.00</td>
<td>3.00</td>
</tr>
<tr>
<td>5.00</td>
<td>4.00</td>
</tr>
<tr>
<td>3.00</td>
<td>1.00</td>
</tr>
<tr>
<td>2.00</td>
<td>2.00</td>
</tr>
</tbody>
</table>

Fuente: Schumacker y Lomax (2010)

La importancia del impacto de los valores faltantes en el resultado de la correlación ha incentivado a los especialistas a la búsqueda de soluciones que atiendan su amenaza potencial. Una alternativa es la eliminación de las observaciones en las que falte algún dato. Si bien esta operación puede resolver el problema de la significación, puede generar una reducción tal en el tamaño de la muestra que se afecte la propia estimación estadística. Otro curso de acción podría ser sustituir los valores faltantes con uno estimado; por ejemplo, por el valor medio de todos los datos de la variable.

d) **Datos atípicos.** Cuando una de las variables presenta una observación claramente atípica, el resultado de la correlación puede ser completamente diferente a otra que contrasta valores sin variaciones apreciables. Por ejemplo:

1 Decimos que un coeficiente es significativo cuando el valor de \(p\) alcanza un máximo de .05

CAPÍTULO II

LA CORRELACIÓN EN LA LÓGICA DE LOS DISEÑOS MULTIVARIADOS

Tabla 2.2.
Demostración de la influencia directa de los datos atípicos sobre el resultado de la correlación

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>X</td>
<td>Y</td>
<td>X</td>
</tr>
<tr>
<td>1</td>
<td>9</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>5 r = .524</td>
<td>3</td>
<td>5 r = -.994</td>
</tr>
<tr>
<td>4</td>
<td>3 p = .37</td>
<td>4</td>
<td>3 p = .001</td>
</tr>
<tr>
<td>5</td>
<td>27</td>
<td>5</td>
<td>2</td>
</tr>
</tbody>
</table>

Adviértase en el primer par de observaciones cómo la presencia de un dato atípico puede llegar a distorsionar el resultado de la correlación (ver Tabla 2.2).

e) Tamaño de la muestra. El cálculo, para el caso de los diseños multivariados, demanda por lo general muestras grandes para mantener estables las estimaciones de los parámetros y los errores estándares. Esta exigencia surge, asimismo, de la necesidad de medir múltiples variables para definir las variables latentes. En realidad, hay poco acuerdo acerca de la magnitud del tamaño de muestra que debe recomendarse al realizar este tipo de modelos metodológicos; así, Ding, Velicer y Harlow (1995) recomendaron un mínimo de 100 o 150 sujetos; Boomsma (1983) en cambio, señala el límite inferior en 400. Hay incluso quienes sugieren que 5 mil sujetos podrían ser insuficientes (Hu, Bentler y Kano, 1992). No obstante, una demostración reciente llevada a cabo por Costello y Osborne (2005) sugirió aplicar la regla de oro de incorporar no menos de 20 sujetos por variable estudiada. Finalmente, Schumacker y Lomax (2010) después de examinar las publicaciones recientes y artículos especializados, señalaron que la mayoría de los estudios referidos habrían incorporado entre 250 y 500 sujetos.

Correlación y Covarianza

La covarianza es un indicador del relacionamiento entre dos variables. Se simboliza por la letra griega sigma (σ_{xy}) cuando ha sido calculada para una población y con "S_{xy}" cuando corresponde a una muestra. Este estadístico se emplea para medir el grado de relación de dos variables siempre y cuando ambas utilicen una escala de medida de tipo intervalar o de razón.
La covarianza, es una medida de dispersión conjunta de dos variables estadísticas, refleja la relación lineal que existe entre estas variables. El resultado cuantitativo fluctúa entre positivo infinito a negativo infinito. Al no tener unos límites establecidos no puede determinarse el grado de relación lineal que existe entre las dos variables, solo es posible advertir la tendencia.

1. Una covarianza positiva significa que existe una relación lineal directa entre las dos variables. Es decir, las puntuaciones bajas de la primera variable (X) se asocian con las puntuaciones bajas de la segunda variable (Y), mientras las puntuaciones altas de X se asocian con los valores altos de la variable Y.

2. Una covarianza negativa significa que existe una relación lineal inversa perfecta (negativa) entre las dos variables. Lo que significa que las puntuaciones bajas en X se asocian con los valores altos en Y, mientras las puntuaciones altas en X se asocian con los valores bajos en Y.

3. Una covarianza 0 se interpreta como la no existencia de una relación lineal entre las dos variables estudiadas, esto ocurre por la propiedad de independencia.

![Correlación Positiva](image)

![Correlación Negativa](image)

![No correlación](image)

Figura 2.1. Demostración gráfica de los distintos tipos de correlación

4. Una matriz de varianza-covarianza representa la variación entre pares diferentes de variables. A lo largo de las columnas, la matriz contendrá los nombres de las variables en orden secuencial (por ejemplo, X₁, X₂, X₃, etc.). A lo largo de las filas, la matriz contendrá los mismos nombres de las variables en el mismo orden secuencial. En cada punto de intersección entre una fila y una columna habrá una covarianza. Por ejemplo,
el número que aparece en la intersección de las variables X_1 y X_2 es la covarianza entre la variable X_1 y la variable X_2 ($S=X_1 X_2$). A lo largo de la diagonal principal de la matriz hay pares emparejados de variables (por ejemplo, X_1 y X_1, X_2 y X_2). Los números asociados con estos pares emparejados son varianzas. Las matrices de varianza - covarianza son simétricas. Esto es, el triángulo superior derecho es la imagen del triángulo inferior izquierdo.

Tabla 2.3.
Representación de la matriz de varianza - covarianza

<table>
<thead>
<tr>
<th></th>
<th>Consudrag X_1</th>
<th>Repetencia X_2</th>
<th>Imagenpo X_3</th>
<th>Ingresofilia X_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consudrag X_1</td>
<td>1.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repetencia X_2</td>
<td>1.000</td>
<td>1.60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Imagenpo X_3</td>
<td></td>
<td></td>
<td>2.71</td>
<td></td>
</tr>
<tr>
<td>Ingresofilia X_4</td>
<td></td>
<td></td>
<td></td>
<td>1.000</td>
</tr>
</tbody>
</table>

Tipos de Correlación

Los investigadores saben que en muchas ocasiones no es posible ejercer un control directo (léase manipular intencionalmente) sobre las variables que se estudian para determinar el efecto o influencia que una genera sobre la otra. En estos casos, se ha pretendido sustituir la manipulación directa de la variable independiente con la manipulación estadística. Este enfoque lleva tarde o temprano a la discusión acerca de las características de la causación y la explicación y conduce inevitablemente hacia el debate de si la correlación debe circunscribir sus resultados únicamente en torno a la relación y no a la causación o si la “manipulación estadística” es equivalente a la manipulación experimental. En todo caso, constituye un hecho aceptado que la regresión múltiple y las ecuaciones estructurales proveen
modelos predictivos y/o explicativos enteramente basados en manipulaciones estadísticas. Por lo tanto, el aporte de la correlación en el desarrollo de dichos modelos es de capital importancia.

Para los propósitos del análisis de los modelos multivariados y especialmente para aquellos conocidos como ecuaciones estructurales, debemos establecer distinciones entre las correlaciones parcial y semi-parcial. Ambos tipos de correlación son consideradas bi-variadas debido a que permiten estudiar las relaciones o asociaciones entre dos variables. Cuando la relación entre dos variables se ejecuta bajo el control de una tercera, la correlación puede ser parcial o semi-parcial, dependiendo de la forma en que las variables son controladas.

Correlación Parcial

Este tipo de correlación busca determinar el grado de asociación existente entre dos variables (X y Y) en caso de eliminarse (o mantenerse constante) la influencia de una o más otras variables (Z y W). El objetivo es encontrar la única variación entre estas dos variables estudiadas (X y Y), al mismo tiempo que se controla (es decir se conoce) la varianza de las variables restantes (Z y W). Por lo general, una correlación parcial se realiza cuando la tercera variable (por ejemplo Z) ha mostrado una relación con una o ambas variables primarias (X o Y). En otras palabras, primero se debe realizar la correlación entre todas las variables, para advertir si existen relaciones significativas entre dichas variables. Desde luego, la realización de esta correlación demanda la existencia de un modelo conceptual claro, respaldada por hipótesis justificadas. Tomemos como ejemplo el siguiente caso:

Existen elementos de juicio que señalan que la autoeficacia emocional constituye un predictor del emprendimiento económico (X predice Y). Sin embargo, sabemos también que la autoeficacia emocional se relaciona asimismo con la disposición a cambiar (Z) y la resiliencia personal (W). Por lo tanto podemos llevar a cabo una correlación parcial para clarificar la asociación entre autoeficacia emocional (X) y la decisión por emprender un negocio (Y), controlando la disposición a cambiar (Z) y la resiliencia (W). El propósito del análisis es determinar si la
relación autoeficacia emocional - emprendimiento económico puede ser considerada como directa o indirecta, mediada por la disposición a cambiar y la resiliencia.

Para llevar a cabo el análisis, se administra, a una muestra de 250 emprendedores económicos, una prueba que integra cuatro escalas tipo Likert (para medir autoeficacia emocional EAEm, disposición a cambiar EDC, resiliencia RES y disposición a emprender EMP). Antes de proceder con la correlación parcial, debe confirmarse la existencia de la relación significativa entre todas las variables implicadas en el estudio. La Tabla 2.4 muestra el grado de asociación entre estas variables, sin parcializar ningún efecto en la llamada matriz de correlaciones de orden cero.

Tabla 2.4.
Correlaciones bi-viadas entre los puntajes globales de cada escala

<table>
<thead>
<tr>
<th>ESCALA</th>
<th>EMP</th>
<th>EAEm</th>
<th>RES</th>
<th>EDC</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMP</td>
<td>1.000</td>
<td>.303(**)</td>
<td>.428(**)</td>
<td>.464(**)</td>
</tr>
<tr>
<td>EAEm</td>
<td></td>
<td>1.000</td>
<td>.678(**)</td>
<td>.598(**)</td>
</tr>
<tr>
<td>RES</td>
<td></td>
<td></td>
<td>1.000</td>
<td>.628(**)</td>
</tr>
<tr>
<td>EDC</td>
<td></td>
<td></td>
<td></td>
<td>1.000</td>
</tr>
</tbody>
</table>

** La correlación es significativa al nivel 0.01 (bilateral)**

La matriz despliega, para cada par de variables, los coeficientes de correlación de Pearson considerando los grados de libertad (N-2) e informa el grado de relación entre las variables que se intenta estudiar (autoeficacia emocional y la decisión por emprender) y permite averiguar si las variables cuyo efecto se desea controlar (resiliencia y disposición a cambiar) se encuentran también relacionadas con las variables estudiadas.

Notese, por lo tanto, que la correlación entre EAEm y EMP es de .303 con un p<.01, lo que significa que la relación es significativa. Asimismo, se advierte que las otras dos variables de control (RES y EDC) se encuentran también fuertemente relacionadas con EAEm y EMP.

Finalmente, se calcula el coeficiente de correlación parcial entre EAEm y EMP, controlando RES y EDC. La siguiente matriz
expone gráficamente los resultados de la correlación entre EAEm y EMP.

<table>
<thead>
<tr>
<th>Controlling for</th>
<th>RES</th>
<th>EDC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,000</td>
<td>0,3013</td>
<td></td>
</tr>
<tr>
<td>AEm</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>P = .000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EMP</td>
<td>0,3013</td>
<td>1,000</td>
</tr>
<tr>
<td>(0.247)</td>
<td>(0)</td>
<td></td>
</tr>
<tr>
<td>P = .000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(Coeficient / (D.F.) / 2-tailed Significance)

La correlación parcial obtenida entre EAEm y EMP eliminando la influencia de las variables RES y EDC es de 0.3013 con un alto nivel de significancia. Este resultado, al señalar que el coeficiente no varía de manera relevante del obtenido en la matriz de orden cero (r = 0.303), permite concluir la existencia de una relación lineal significativa entre autoeficacia emocional y la decisión para emprender un negocio, sin la influencia de la resiliencia y la disposición a cambiar.

Cálculo de la Correlación Parcial usando SPSS

Para ilustrar el empleo del SPSS en la obtención de la correlación parcial, tomemos el siguiente ejemplo. Supongamos que tenemos tres variables que están siendo estudiadas, X, Y y Z, y deseamos conocer el grado en que dos de ellas (X y Z) se encuentran relacionadas, mientras se controla el efecto de la tercera (Y).

De la página del visor de datos (Figura 2.2), seleccione “Analizar” y luego “Correlaciones” y posteriormente “Parciales”, pinchando sobre esta última, se abrirá el cuadro de diálogo que presenta la Figura 2.3.

Elija en él las variables que se desea correlacionar trasladándolas de la ventana a la izquierda del cuadro a la casilla superior en la derecha, marcándolas primero y pulsando luego sobre la flecha entre ambas ventanas. Hágase lo mismo con la variable seleccionada como control en la ventana inferior derecha. Mantenga “dos colas” (two tailed) por defecto en la sección de “prueba de significancia”. Finalmente pulse “opciones” para
obtener el siguiente nuevo cuadro de diálogo que se expone en la Figura 2.4.

Figura 2.2. Visor de datos del SPSS desplegando la información ficticia del ejemplo concentrada en tres variables

Figura 2.3. Cuadro de diálogo del SPSS desplegado para introducir las variables de análisis en la correlación parcial

CAPÍTULO II
LA CORRELACIÓN EN LA LÓGICA DE LOS DISEÑOS MULTIVARIADOS
Elija en la sección de “estadísticas” la opción “correlaciones de orden cero” para obtener una matriz de correlaciones que incluya en primera instancia las correlaciones de las tres variables que están siendo estudiadas y luego los resultados del proceso de parcialización. Esta sección permite también obtener la media y las desviaciones así como el número de casos válidos de cada variable. En la sección de “valores perdidos”, la opción “excluir casos según lista” excluye automáticamente del cálculo los casos con valores perdidos de las variables seleccionadas, mientras que la opción “excluir casos según pareja” excluye del cálculo los casos con valores perdidos de algunas de las variables estudiadas en el proceso de parcialización. Elija la primera opción y luego pulse “continuar” y “ok” en el cuadro de diálogo de correlación parcial.

Interpretación de los Resultados

Después de ordenar el cálculo, se obtendrá una matriz de correlaciones similar a la que se presenta en la Tabla 2.5.

En la parte superior se despliegan las correlaciones entre las tres variables sin parcializar ningún efecto. Este resultado es absolutamente necesario pues nos informa sobre el grado de relación existente entre las variables estudiadas. En nuestro
ejemplo, nos informa acerca de la correlación entre las dos variables relevantes (X y Z), pero también nos dice si la variable que servirá de control (Y), se encuentra o no relacionada con las otras dos que se están estudiando. Más adelante se confirmará la relevancia de este primer elemento. Finalmente la correlación X y Y es aún menor, aunque igualmente significativa (.548, p = .000). El resultado entonces señala en primera instancia que las tres variables expresan un fuerte relacionamiento positivo (aunque en diferente grado) entre sí.

<table>
<thead>
<tr>
<th>Correlations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control Variables</td>
</tr>
<tr>
<td>Correlation</td>
</tr>
<tr>
<td>Significance (2-tailed)</td>
</tr>
<tr>
<td>Df</td>
</tr>
<tr>
<td>Correlation</td>
</tr>
<tr>
<td>Significance (2-tailed)</td>
</tr>
<tr>
<td>Df</td>
</tr>
<tr>
<td>Correlation</td>
</tr>
<tr>
<td>Significance (2-tailed)</td>
</tr>
<tr>
<td>Df</td>
</tr>
<tr>
<td>Correlation</td>
</tr>
<tr>
<td>Significance (2-tailed)</td>
</tr>
<tr>
<td>Df</td>
</tr>
</tbody>
</table>

Tabla 2.5.
Matriz de correlaciones de orden cero, desplegada por el SPSS para interpretar la correlación parcial

En segundo lugar, en la parte inferior la tabla, se presenta la matriz de correlación parcial, es decir el grado de relación entre las variables Z y X, controlándose el valor de la variable Y. Para poder realizar la interpretación de los resultados, deberemos comparar la correlación entre Z y X sin control y la correlación obtenida parcializando Y. En el caso de nuestro ejemplo, podemos advertir que la correlación entre Z y X es de .880 con una p = .000 lo que señalan un alto grado de relación. Asimismo, advertimos que la correlación entre Z y Y arroja un coeficiente de

CAPÍTULO II
LA CORRELACIÓN EN LA LÓGICA DE LOS DISEÑOS MULTIVARIADOS
.578, menor al anterior pero igualmente significativo ($p = .000$). La correlación parcial obtenida entre Z y X, eliminando la influencia de Y fue de .826 ($p = .000$), menor que la evidenciada en la matriz de orden cero, aunque igualmente significativa. Este resultado nos permite afirmar que como la correlación parcial permanece alta y su diferencia con la obtenida en la matriz de orden cero es desestimable, podríamos concluir que entre las variables Z y X existe una relación lineal significativa y que esta relación no cambia si se controla el efecto de la variable Y.

Supongamos por un momento que estamos trabajando con una muestra de adolescentes y que la variable denominada Z representa una medida de abandono escolar, que la variable X resume el consumo de drogas sociales de la muestra y que Y constituye la presencia de la imagen paterna en el hogar durante la primera infancia. Los resultados de la correlación parcial señalarían que entre abandono escolar y consumo de drogas existe una clara relación y que ésta se da independientemente de la existencia de imagen paterna en el hogar del joven. Esto permitiría asumir de manera muy preliminar que el abandono escolar por sí mismo puede ser considerado un indicador del consumo de drogas en la adolescencia.

Sin embargo, si el resultado de la correlación parcial hubiese demostrado que la relación entre Z y X al eliminarse el efecto de Y perdía significativamente su fuerza en la relación, entonces podríamos haber concluido que el abandono escolar puede ser un indicador relativamente confiable del consumo de drogas en los adolescentes, siempre y cuando esté acompañado de ausencia de figura paterna en la primera infancia. En otras palabras Z y X estarían relacionados siempre y cuando esté presente Y.

Correlación Semiparcial

El problema fundamental de toda investigación inferencial se resuelve en determinar el grado de influencia que ejercen las variables independientes sobre la variable dependiente. En otras palabras, qué tanto pueden explicar las variables independientes las variaciones (la varianza) suscitadas en la variable dependiente cuando aquellas son presentadas con fines de demostración. Las variables que pueden explicar una mayor cantidad de varianza contribuyen a la explicación causal con una mayor claridad que aquellas que tiene mayor dificultad de brindar dicha explicación. El siguiente diagrama de Venn puede ayudar a explicar esta noción:
Supongamos que el círculo Y constituye la varianza total explicable de una variable dependiente (VD) cualquiera y que los círculos menores representan la influencia de las variables independientes (VI) X_1, X_2 y X_3. El área marcada de cada VI que se superpone a la VD, representaría la proporción de varianza de Y que cada variable por separado, es capaz de explicar. Es decir, la magnitud de las influencias respectivas reales de X_1, X_2 y X_3 sobre Y. El resto de la superficie de Y que se encuentra en blanco constituye la proporción de varianza no explicada por las variables estudiadas.

En el caso de la correlación parcial, el cálculo estaba pensado para eliminar la varianza común de todas las variables estudiadas (sean éstas variables independientes o dependientes, predictoras o criterio). De esta manera se analiza la contribución o efecto de una variable sobre otra (representada por bc o área compartida por dos variables) en presencia o en ausencia de terceras variables comunes cuyo efecto desea controlarse. Esto es, después de eliminar la varianza que la VI y VD tienen en común con otras VI’s, la parcialización —como hemos visto— expresa la correlación entre los “resíduos” de la VI y los de la VD.

En la correlación semiparcial en cambio, resulta posible eliminar la influencia que ejercen diferentes VI, por separado sobre la VD sin modificar su varianza. De esta manera, la correlación entre VI y VD con la varianza común eliminada de otras variables, se denomina correlación semi-parcial. Dicho de otra manera, el

CAPÍTULO II

LA CORRELACIÓN EN LA LÓGICA DE LOS DISEÑOS MULTIVARIADOS
coeficiente de correlación semiparcial es la correlación existente entre dos variables cuando se ha eliminado de cada una de ellas el efecto que una tercera variable tiene sobre ella. Por ejemplo, podríamos estar interesados en estudiar la relación sexo (VI) y disposición a emprender iniciativas económicas (VD) en la que deseamos considerar los años experiencia en el trabajo (una variable de covariable). Nótese que no sería razonable asumir que los años de experiencia ejerzan alguna influencia sobre el sexo, por lo que es pertinente eliminar este efecto únicamente para la variable emprendimiento (VD). Sin embargo, si bien es cierto que la experiencia no influye sobre el sexo de las personas, es probable que el sexo pueda eventualmente explicar por qué varones y mujeres pueden llegar a tener una experiencia diferencial en el trabajo. Así, la cantidad de experiencia puede ser concebida más como una variable de mediación que una VI propiamente dicha.

En el afán analítico por separar el efecto de las VI’s para poder decir algo de las contribuciones específicas de éstas, el análisis correlacional simple (al cuadrado) entre VI’s no basta, pues éstas suelen estar correlacionadas entre sí, compartiendo algo de variabilidad con lo que se oscurece el análisis. Veamos un ejemplo cuantitativo:

Consideremos las correlaciones de X_1 con Y y de X_2 con Y, asumiendo que el coeficiente de correlación de Pearson para la correlación X_1-Y es de 0.6 ($r_{12} = 0.6$) y el coeficiente obtenido para la correlación X_2-Y es de 0.7 ($r_{12} = 0.7$). Una consideración superficial podría llevarnos a concluir que X_1 contribuye con un $0.36 (0.6^2)$ y que X_2 lo hace con $0.49 (0.7^2)$. Si sumamos ambas podemos incorrectamente asumir que la varianza explicada llega a .74. Sin embargo cuando aplicamos la correlación múltiple (R_{123}) se obtiene un valor de $R = 0.8 = .64 (0.8^2)$. Esto señala que la simple suma de las varianzas individuales no explica la varianza total y esto se debe a que las diferentes variables comparten entre sí sus fuentes de variabilidad. El siguiente esquema puede ayudar a comprender el fenómeno.

Nótese que la influencia de X_1 sobre Y se resume en lo que en el diagrama se representa con la porción A, mientras que la influencia de X_2 corresponde a la porción C. Por lo tanto la contribución conjunta de X_1 y X_2 será $A+C$. B y D corresponden a las porciones de variación de la VI que no ofrecen explicación. El área compartida por A y C señala las fuentes de variabilidad compartidas ($a-c$) por ambas variables (ver Figura 2.6), (ejemplo
Debido a que la influencia de las VI's (X_1 y X_2) se encuentran superpuestas es necesario asignar dichas influencias compartidas a las diferentes variables según un criterio de jerarquización. Así la variable de mayor jerarquía deberá tener prioridad con respecto a la variabilidad compartida y deberá ser introducida al programa en primera instancia; en segundo lugar entrarán las variables de menor jerarquía. El orden de entrada juega un rol muy importante y dependiendo de éste, los resultados variarán en relación con la proporción de varianza que pueden explicar. Por ejemplo, si se decide introducir la variable X_1 en primer lugar y la variable X_2 en segundo, X_1 llegaría a explicar el .36 por ciento de la varianza, mientras que X_2 solo el .28. Sin embargo, cuando priorizamos X_2 en el primer lugar, ésta variable llegaría a explicar el .49 de la varianza, mientras que X_1 introducido en segundo lugar explicaría el .15 de la variabilidad. De esta manera, la importancia otorgada por el investigador a la variable le conducirá a resultados específicos, dependiendo del orden en que es incluida en el modelo. El investigador debe saber que a mayor intercorrelación entre la variable bajo consideración y otras, y mientras más tarde se introduzca la variable en el modelo, ésta explicará la varianza en menor proporción. Más
adelante, cuando discutamos las características del modelado en la regresión múltiple, volveremos a retomar el tratamiento de este tema.

Tipos de Correlaciones Semi-parciales

Debemos señalar que las correlaciones semi-parciales pueden ser de primer orden, cuando elimina la influencia de una sola variable \([r_{y(z)}] \) o \([r_{y(2,3)}] \), de segundo orden, cuando se busca correlacionar \(X_1 \) con \(Y \), eliminando de \(X_1 \) la influencia de \(X_2 \) y \(X_3 \) \([r_{y(1,2,3)}] \), o de tercer orden cuando correlacionamos \(X_1 \) con \(Y \), eliminando la influencia de \(X_2 \), \(X_3 \) y \(X_4 \) sobre \(X_1 \) \([r_{y(1,2,3,4)}] \).

Finalmente, llamamos correlación semi-parcial múltiple a las correlaciones entre una \(VD \) y un conjunto de \(Vt's \), cuando se elimina la influencia de más de una variable del conjunto de \(Vt's \). Por ejemplo, la relación \(R_{y(1,2,3)} \) señala la correlación de \(X_1 \) y \(X_2 \) con \(Y \), eliminando la influencia de \(X_3 \). (http://personal.us.es/vararey/ adatos2/semiparcial.pdf).

Cálculo de la Correlación Semi-parcial usando SPSS

El cálculo de la correlación semi-parcial con la ayuda del SPSS solo es posible mediante el procedimiento previsto para el análisis de la regresión múltiple. Con el propósito de ilustrarlo, utilizaremos un ejemplo ficticio construido ex profeso.

Figura 2.7. Ilustración del patrón de acceso desde el editor de datos del SPSS, para el análisis de la correlación semiparcial

CAPÍTULO II

LA CORRELACIÓN EN LA LÓGICA DE LOS DISEÑOS MULTIVARIADOS
Partamos de la necesidad de establecer una correlación semiparcial de la repetencia escolar \((X_1) \) y el consumo de drogas \((Y) \), controlando presencia de imagen paterna en el hogar \((X_2) \) y el ingreso de la familia \((X_3) \).

En primera instancia, en el editor de datos elijase "Analizar", luego "Regresión" y seguidamente "lineal" tal como se ilustra en la Figura 2.7.

Figura 2.8. Cuadro de diálogo del SPSS para ingresar las variables y requerir las operaciones estadísticas
Al presionar “Estadísticos” y se desplegará el cuadro de diálogo de la Figura 2.9.

![Figura 2.9. Cuadro de diálogo en el SPSS que selecciona las opciones de análisis en el cálculo de la correlación semiparcial](image)

Figura 2.9. Cuadro de diálogo en el SPSS que selecciona las opciones de análisis en el cálculo de la correlación semiparcial

Selezione “Correlaciones parciales y semi-parciales” y presione “continuar” para volver al cuadro de diálogo anterior; allí presione “Ok”. Con esta operación se obtendrá la Tabla 2.6 analizándose la correlación entre “Imagenpaterna” y Consumodrogas”, controlando “Repetición”. Repítase la operación introduciéndose en el cuadro de diálogo de la regresión lineal, en la casilla de “Independientes(s)” las variables “Imagenpaterna” y “Ingresofilia” para obtener adicionalmente una tabla desplegando los resultados de la correlación parcial entre “Imagenpaterna” y “Consumodrogas”, controlando “Ingresofilia”. En ambos casos la atención en el análisis debe centrarse principalmente, aunque no únicamente, en la última columna.
Tabla 2.6.
Resumen de los datos de correlación de orden cero, parcial y semiparcial (Part) derivados de las variables Imagenpaterna y Repitenza, considerando la variable “consumodrogas” como VD

<table>
<thead>
<tr>
<th>Model</th>
<th>Unstandardized Coefficients</th>
<th>Standardized Coefficients</th>
<th>t</th>
<th>Sig.</th>
<th>Correlations</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Constant)</td>
<td>1.457</td>
<td>.350</td>
<td>4.146</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>Imagenpaterna</td>
<td>.254</td>
<td>.015</td>
<td>.767</td>
<td>.000</td>
<td>.827 .758</td>
</tr>
<tr>
<td>Repitenza</td>
<td>.048</td>
<td>.020</td>
<td>.111</td>
<td>.016</td>
<td>.525 .167</td>
</tr>
</tbody>
</table>

*a. Dependent Variable: Consumodrogas

Tabla 2.7.
Resumen de los datos de correlación de orden cero, parcial y semiparcial (Part) derivados de las variables Imagenpaterna e ingresosfija, considerando la variable “consumodrogas” como VD

<table>
<thead>
<tr>
<th>Model</th>
<th>Unstandardized Coefficients</th>
<th>Standardized Coefficients</th>
<th>t</th>
<th>Sig.</th>
<th>Correlations</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Constant)</td>
<td>1.676</td>
<td>.374</td>
<td>4.480</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>Imagenpaterna</td>
<td>.254</td>
<td>.013</td>
<td>.827</td>
<td>.000</td>
<td>.827 .827</td>
</tr>
<tr>
<td>Ingresosfija</td>
<td>.002</td>
<td>.012</td>
<td>.007</td>
<td>.181</td>
<td>.856 .027 .013</td>
</tr>
</tbody>
</table>

*a. Dependent Variable: Consumodrogas

Interpretación de los Resultados

Ante las tablas obtenidas, la interpretación de los datos debería proceder de la siguiente manera:

a) Partiendo de la suposición de que la ausencia de la imagen paterna en el hogar constituye un predictor de consumo de drogas durante la adolescencia y que esta variable puede estar siendo influída tanto por la repetencia escolar como por el ingreso familiar, resulta necesario controlar los efectos
respectivos para tener un panorama más claro sobre el particular.

b) Verifiquemos en primer lugar los datos de la correlación de orden cero. En nuestro ejemplo, se evidencia la correlación positiva entre consumo de drogas e imagen paterna \(r = .827 \) y entre consumo de drogas y repetencia \(r = .525 \). Está también claro que el ingreso familiar no correlaciona con las otras variables (este resultado desestima la influencia de ingreso familiar y por lo tanto puede ser esta variable eliminada del análisis). Esto querría decir que mientras más ausente esté la imagen paterna en el hogar del adolescente, tiende a ser también mayor el consumo de drogas. Asimismo, el consumo de drogas es más alto cuanto mayor es la repetencia escolar.

c) Por lo tanto parecería necesario intentar controlar el efecto que ejerce la repetencia sobre la ausencia de imagen paterna en la correlación entre ausencia de imagen paterna y consumo de drogas \(r_{y_{0.2}} \). El análisis en este sentido señala que la ausencia de la figura paterna puede ser considerada una variable predictora importante \(r = .645 \) incluso sin recibir la influencia de repetencia. Los niveles de significación de esta relación están dados por la significación lograda por la prueba \(t \), en la misma tabla \(p = .000 \).

d) Finalmente, el aporte de la variable ingreso familiar es tan escaso que controlando su influencia sobre ausencia de imagen paterna, arroja un coeficiente de correlación apenas por debajo del obtenido en la correlación de orden cero \(r = .826 \). Su contribución en la explicación de la varianza es de apenas el \(.000049 \) por ciento \((.007^2) \).

En resumen, podríamos decir que llevando a cabo diferentes correlaciones semi-parciales entre las variables causales, el investigador puede utilizar los resultados para dar a conocer la cantidad de varianza explicada por cada variable predictora (VI). Los investigadores suelen preferir ejecutar correlaciones semi-parciales más que las parciales porque aquellas permiten conocer proporciones relativas al total de la variabilidad de la variable dependiente.

Para una VI dada, la correlación semi-parcial elimina primero de esta variable, toda la varianza explicada con propósitos de
control; luego correlaciona el único componente restante de la VI con la variable dependiente (VD). Por su parte, la correlación parcial elimina de la VI y de la VD, toda la varianza explicada para ejercer el control; luego correlaciona el único componente de la VI con el único componente de la VD.
La Regresión Múltiple consiste en un modelo que permite la predicción de una única variable dependiente a partir de una o varias variables independientes conocidas como descriptorios. Su conocimiento y manejo resulta ser un paso adelante para la comprensión completa del Modelado de Ecuaciones Estructurales. Por lo tanto, ocuparemos un espacio para revisar sus conceptos y aplicaciones. Analicemos primeramente el concepto de regresión.

Regresión Lineal

Al igual que la correlación, la regresión lineal tiene que ver con la relación entre dos variables. Si la correlación determinaba la magnitud y la dirección de una relación, la regresión toma la relación como base para la predicción. La regresión puede configurar relaciones perfectas, como cuando todos los puntos se localizan sobre la línea recta y lo único que resta es señalar la predicción obteniendo la correspondiente ecuación (Pagano, 1999). Sin embargo, cuando se trata de relaciones imperfectas, es decir cuando los puntos no se superponen sobre la recta, el cálculo se complica por la necesaria inclusión de un método de ajuste.
En la regresión lineal se asume que una de las variables adopta el papel de predictora o independiente, y que la otra variable es el efecto, resultado o variable dependiente. La variable independiente o predictora suele ser un factor previamente determinado. La variable dependiente llamada también de criterio se sitúa el lugar de la Y en el eje cartesiano (ordenada) mientras que la variable independiente se ubica el lugar de la X (abscisa). El modelo de regresión lineal simple intenta ajustar, con los datos de la muestra, la siguiente ecuación:

\[Y = a + bX + e \]

En la ecuación, a es el valor que adoptará Y (VD) cuando X valga cero; b es conocido como “pendiente de la recta” y se interpreta como el cambio en la magnitud de Y por cada unidad de cambio de X. Finalmente, e es el error o residuo y representa una cuantificación del desajuste de los datos de la muestra al modelo lineal. Éste varía de un individuo a otro, puesto que corresponde a la cantidad que habría que sumar o restar a la predicción para que coincida exactamente con lo observado.

Cuando después del cálculo se rechaza la hipótesis nula (lo que significa que el contraste es estadísticamente significativo), se concluye diciendo que hay regresión lineal de Y sobre X, ya que se puede explicar una parte de los valores de la variable dependiente o criterio (Y) a partir de los valores de la variable independiente o predictora (X).

Sin embargo, la predicción que realiza el modelo de regresión lineal no es perfecta por efecto de la varianza residual. Esta imperfección debe encararse con algún método de ajuste. Usualmente se aplica el Coeficiente de Determinación (R²) o también el método de ajuste conocido como “mínimos cuadrados”. Mayores detalles podrá encontrar el lector en Aguayo (2007) de donde se han tomado algunas de estas nociones, así como de fuentes como Pagano (1999), Wackerly y Beaver (1978) y otra literatura especializada relacionada.

Regresión Múltiple

La técnica de la regresión múltiple constituye una extensión de la regresión bivariada que acabamos de describir de manera muy general e incorpora conceptos tales como correlación, predicción y líneas de tendencia. La única diferencia es que en la
regresión múltiple, se considera un número mayor de variables. Por lo tanto se puede decir de una manera muy general que la regresión múltiple explora relaciones causales multivariadas entre dos o más variables independientes o predictoras y una variable dependiente o de criterio. Se puede decir también que la investigación que se apoya en la regresión múltiple analiza la realidad en su justa dimensión; es decir en su verdadera complejidad, puesto que la totalidad de los eventos que se estudian en psicología son multidimensionales y deben ser abordados con procedimientos multivariados.

La ecuación que debe considerarse en la regresión múltiple adopta el siguiente aspecto:

\[Y = bX_1 + bX_2 + bX_3 + \alpha \]

Esta ecuación nos dice que debemos considerar más de una variable independiente o predictor \((X_1, X_2, y X_3)\), nos dice también que para tomar en cuenta sus efectos sobre \(Y\), debe calcularse el valor de cada variable en la tendencia \((b)\). Finalmente, como en el caso de la regresión simple, a es el valor que adoptará \(Y\) cuando \(X\) valga cero. En el análisis de regresión múltiple, la configuración de la ecuación se logra escogiendo las variables en conjunto o una por una. El propósito de ello es encontrar entre todas las variables explicativas, aquellas que expliquen mejor la variable dependiente, y lo más importante, sin que dicha explicación se deba a la combinación lineal de todas las variables en conjunto. Repasemos estos elementos con la ayuda de un ejemplo.

Supongamos que estudios previos han documentado de manera significativa la relación entre la autoeficacia emocional \((X1)\) y la toma de decisiones para emprender un negocio \((Y)\) y supongamos también que deseamos estudiar además, el valor predictivo de las variables, disposición al cambio \((X2)\), valores de apertura al cambio \((X3)\) y resiliencia \((X4)\). Entonces insertamos los valores de dichas variables en la ecuación, multiplicándolos con los valores correspondientes de la pendiente de la línea de tendencia o coeficiente de regresión de cada variable. Este cálculo puede permitir advertir, por ejemplo, que los valores de cambio pueden tener efectos más importantes sobre \(Y\) que la resiliencia o la disposición a cambiar:

\[Y = .53X_{autoef} + .22X_{disp camb} + .32X_{valores} + .28X_{resiliencia} + .85 \]
La nomenclatura. El cálculo de la regresión múltiple requiere que los coeficientes de regresión deban ser estándares, es decir, convertidos a puntajes Z. Estos puntajes estándares se representan con la letra griega beta (β). Beta mide la fortaleza con que cada variable predictiva influye a la variable criterio. Así, $β = 2.0$ indica que un cambio de una desviación estándar en la variable predictora, resulta en 2.0 desviación estándar en la variable criterio. Por lo tanto, mientras más grande es el valor de beta, más importante es el impacto del predictor.

El resultado final se representa con el coeficiente de regresión múltiple (R^2), que es el cuadrado de la correlación entre Y, y la mejor combinación lineal de los predictores. Por lo tanto, un $R^2 = .70$ significaría que las diferentes variables de la ecuación estarían en condiciones de explicar el 70 por ciento de la varianza de Y (Guiles, 2008). Sin embargo se sabe que R^2 suele sobrestimar el éxito del modelo y por lo tanto, es común considerar R^2 ajustada que representa por lo general una valoración más real de la efectividad del modelo.

Aquí debemos añadir que las correlaciones parciales y semiparciales, tal y como han sido descritas en el capítulo anterior, constituyen la base fundamental de la regresión múltiple. Los coeficientes de regresión constituyen coeficientes semiparciales y los coeficientes estandarizados de regresión (β) son correlaciones parciales. De esta manera, para predecir la decisión de emprender una iniciativa económica (Y), es recomendable llevar a cabo la parcialización de la autoeficacia (X_1), la disposición a cambiar (X_2), los valores de cambio (X_3) y la resiliencia (X_4). Haciéndolo, es posible obtener el coeficiente de autoeficacia (que pudo haber explicado, digamos, solo un cuarto del total de varianza de Y). Parcializando la varianza de la autoeficacia somos capaces de separar sus efectos de los que podrían también ejercer la disposición a cambiar, los valores y la resiliencia. Posiblemente, de haber intentado estudiar solamente la influencia de la autoeficacia sobre la decisión a emprender, hubiésemos atribuido todo el efecto solo a la autoeficacia, oscureciendo su contribución real, relativa a las otras posibles variables que pueden también explicar la relación.

Significación de los coeficientes de regresión. Una vez obtenidos los coeficientes de regresión, es posible establecer su relevancia conociendo la significación respectiva, ésta nos permitirá rechazar o no la hipótesis nula que supone que el predictor (o los
predictores) no explican de manera significativa la variabilidad de la decisión de emprender un negocio (Y). Para conocer la significación se calcula un valor “t”, y éste se obtiene dividiendo el coeficiente no estandarizado (b) entre el error estándar de dicho coeficiente. Si el valor de “t” resulta significativo, entonces se asume también la significación del coeficiente.

También podemos determinar la significancia de la solución final que predice Y (R²). Esto se realiza convirtiendo R² en un valor “F” que puede ser contrastado en una tabla de valores estadísticos según la siguiente fórmula:

\[F = \frac{(N-P-1)R^2}{P(1-R^2)} \]

Donde N equivale al tamaño de la muestra total y P supone el número de predictores considerados en la ecuación. Siguiendo con nuestro ejemplo presentado más arriba y asumiendo que la solución predictiva total fue .67 (R² = .67), obtenida con 60 sujetos, considerando cuatro predictores, tendríamos:

\[F = \frac{(60 - 4 - 1) .67}{4 (1 - .67)} = \frac{36.85}{1.32} = 27.91 \]

Acto seguido, deberemos confrontar este resultado en una tabla F tomando 5 grados de libertad para el numerador (P) y 55 grados de libertad (N-P-1) en el denominador. Para esta relación, un valor de F= 27.91 resulta ser altamente significativo (p < .000), lo que significaría que podemos rechazar la hipótesis nula (H₀), concluyendo que la autoeficacia emocional, la disposición al cambio, los valores de cambio y la resiliencia explican el 67 por ciento de la varianza total de la decisión para emprender una iniciativa económica.

Diagnóstico de los datos

A este punto, antes de proceder con la regresión múltiple, vale la pena realizar un cuidadoso análisis de las características de los datos que se analizan (ver Capítulo I del presente libro). Este análisis nos dirá si el cálculo de la regresión múltiple es
procedente con el tipo de datos que poseemos. Los siguientes aspectos deben ser considerados:

a) En primer lugar, debe asegurarse que la relación estudiada sea de naturaleza lineal, es decir, los predictores y la variable criterio siguen una línea recta. Cuando estamos frente a una relación no lineal (por ejemplo curvilínea), será preciso utilizar otras técnicas.

b) La variable criterio (VD) que será predicha debe ser medida con una escala continua (de intervalo o de razón). Cuando la variable criterio es dicotómica (como por ejemplo sexo, 1 = varón, 2 = mujer), deberá elegirse otro tipo de regresión llamada "logística" que será tratada más adelante, en el siguiente capítulo.

c) Similar cuidado debe tomarse tratándose de las variables predictoras, aunque puede también considerarse variables dicotómicas (sexo). No obstante, si las variables son tricotómicas como cuando se considera la identidad sexual (masculino, femenino y andróginio) ésta no puede ser considerada una sola variable. En este caso deberá crearse tres diferentes variables, cada una con dos categorías de respuesta (masculino - no masculino; femenino - no femenino y andróginio - no andróginio). Este tipo de variables dicotómicas se conocen como "dummy variables".

d) Con respecto al tamaño de la muestra, como en el caso de la correlación, existen también para la regresión múltiple, una serie de recomendaciones para elegir una apropiada cantidad de sujetos o participantes. Stevens (1996) por ejemplo recomienda que se debe elegir al menos 15 casos por cada predictor. No obstante, no siempre existe el consenso necesario sobre este tema, pero todo apunta a recomendar la utilización del mayor número posible de participantes.

e) Deberemos complementariamente verificar que las variables predictoras correlacionen entre sí; no obstante, dicha correlación no debe ser excesivamente fuerte. Se conoce como "multicolinealidad" al efecto de una situación no deseable en la que una de las variables predictoras o independientes es una función lineal de otras variables predictoras o independientes. En otras palabras, como la técnica de la regresión múltiple demanda una relación lineal (expresada por una línea recta)

CAPÍTULO III
ANÁLISIS DE REGRESIÓN MÚLTIPLE
de las variables consideradas, no deberíamos esperar que las variables independientes o predictoras correlacionen de manera muy importante, unas con otras.

f) Adicionalmente, debemos vigilar la atipicidad de los datos y los datos faltantes o “missing values”. El SPSS controla por defecto la atipicidad cuando se solicita el diagnóstico por caso en el análisis de los residuos.

g) Finalmente, es preciso también considerar con cuidado sus características residuales, es decir la exactitud de la predicción. Para ello podemos acudir a las ayudas proporcionadas por el SPSS.

Cálculo de la regresión múltiple usando SPSS

Con el propósito de acompañar al lector paso a paso con el proceso de análisis, formularemos el siguiente ejemplo. Se ha formulado la hipótesis de que la disposición a cambiar puede ser predicha a partir de la posesión de cierto tipo de valores personales como el valor de logro y el valor de estimulación (Schwartz, 1992), por un lado y la auto-eficacia emocional (Bandura, 1997), por otro. En otras palabras, si alguien cuenta con estos atributos, estará más dispuesto a cambiar que otra persona que no reúne estas condiciones. Para poner a prueba esta hipótesis, se administran cuatro pruebas a una muestra de 417 estudiantes universitarios de ambos sexos, de extracción socioeconómica media y con edades comprendidas entre los 18 y 28 años de edad. Se aplica el PVQ de Schwartz, en sus subescalas de Logro y Estimulación, la escala de Auto-eficacia Emocional (Caprara y Cols.,) y la Escala de Disposición al Cambio (Roth, 2009).

Como en todos los casos en que se administra el SPSS, desde el editor de los datos, identifíquese las variables que deberán ser incorporadas en el análisis. Estas variables son de dos clases: unas constituyen las variables independientes (VI) y solo una es la variable dependiente (VD). Por lo tanto, selecciónese “Analizar”, luego “Regresión” y finalmente “Linear”, tal como se muestra en la Figura 3.1.

Esta selección de opciones permitirá la apertura del siguiente cuadro de diálogo (Figura 3.2). Arrastre la variable EDCTOTAL a la casilla correspondiente a la variable dependiente, puesto que se trata de la “variable criterio” y arrastre las restantes (PVQLOGRO, TOTESTIM y SEETOTAL) hacia la casilla de
las variables independientes, debido a que jugarán el papel de “variables predictoras” en nuestro ejemplo.

Figura 3.1. Ruta de acceso para computar “Regresión Múltiple” desde el editor de datos del programa SPSS

Un elemento de fundamental consideración es la elección del método, éste permite seleccionar el procedimiento por el cual se introducen las variables independientes en el análisis. Nos sirve para elegir la mejor ecuación de regresión y permite construir una variedad de modelos de regresión a partir del mismo conjunto de variables. Existen dos cursos de acción que puede seguirse para determinar el método de ingreso de variables. El primero de ellos se llama “simultáneo” y prevé el ingreso de todas las variables que componen el modelo, de una sola vez, en un solo paso. En el SPSS se le denomina “Introducir” (Enter) y es un método por defecto.

El segundo curso de acción se lo conoce como “Jerárquico” y permite ingresar las variables en un orden determinado, generalmente dictado por la lógica de una teoría en particular. Si el investigador tiene una idea clara acerca de la importancia de una variable por encima de las otras, entonces debería inclinarse por este procedimiento. Desde un punto de vista estadístico, el orden de entrada debería estar determinado por la fuerza de la correlación con la variable dependiente o criterio. Son tres los métodos disponibles bajo esta modalidad: a) elección “hacia
adelante" (o forward); b) selección "hacia atrás" (o Backward) y c) selección por "pasos sucesivos" (o Stepwise).

Elección hacia delante (Forward): Procedimiento de selección de variables en el que éstas son introducidas secuencialmente en el modelo. La primera variable que se considerará para ser introducida en la ecuación será aquélla que tenga mayor correlación, positiva o negativa, con la variable dependiente o criterio. Dicha variable será introducida en la ecuación sólo si satisface el criterio de entrada. Si ha entrado la primera variable, se considerará como próxima candidata la variable independiente o predictora que no esté en la ecuación y cuya correlación parcial sea la mayor. El procedimiento termina cuando ya no quedan variables que satisfagan el criterio de entrada.

![Figura 3.2. Cuadro de diálogo que permite recibir las VI y la VD, elegir el método e iniciar el análisis](image)

Elección hacia atrás (Backward): Procedimiento de selección de variables en el que se introducen de una vez todas las variables en la ecuación y después se van excluyendo una tras otra. Aquella variable que tenga la menor correlación parcial con la variable dependiente será la primera en ser considerada para su exclusión. Si satisface el criterio de eliminación, será eliminada. Tras haber excluido la primera variable, se pondrá a prueba aquella variable, de las que queden en la ecuación, que presente
una correlación parcial más pequeña. El procedimiento termina cuando ya no quedan en la ecuación variables que satisfagan el criterio de exclusión.

Elección por pasos sucesivos (Stepwise): En cada paso se introduce la variable independiente que no se encuentre ya en la ecuación y que tenga la probabilidad más pequeña (valor F). Las variables ya introducidas en la ecuación de regresión se eliminan de ella si su probabilidad llega a ser suficientemente grande. El método termina cuando ya no hay más variables candidatas a ser incluidas o eliminadas.

El procedimiento de pasos sucesivos (stepwise) es el más sofisticado y supone: a) en un primer paso, se incluye la variable que reúne ciertas condiciones de entrada; b) en cada paso de verificación se incluyen variables que cumplen con requisitos de salida; c) para cada paso se valora la "bondad de ajuste" de los datos al modelo regresional y se calculan sus parámetros, y c) el proceso se inicia sin variable alguna en la ecuación y termina cuando se incluyen todas las variables previstas.

Una vez seleccionado el método de ingreso, presiónese "Estadísticas" para definir las operaciones complementarias. Al hacerlo se desplegará el siguiente cuadro de diálogo con las siguientes opciones (ver Figura 3.3):

![Figura 3.3. Cuadro de diálogo para definir los estadísticos más aconsejables para el análisis](image)

CAPÍTULO III
ANÁLISIS DE REGRESIÓN MÚLTIPLE 53
En relación a los coeficientes de regresión elijase “Estimaciones” o “estimales” (elegido por defecto), “Ajuste del modelo” y “Diagnóstico de colinealidad”. Con respecto al análisis de los residuos, elijase la prueba de “Durbin-Watson” y “Diagnósticos por caso”. A continuación presione “Ok”.

Estimaciones. El programa muestra para las variables incluidas en el modelo, los coeficientes de regresión, su error típico de estimación, los valores beta, los valores de “t” y el nivel de significación de los coeficientes de regresión.

Ajuste del modelo. Establece el coeficiente de determinación y el coeficiente de determinación ajustado, así como el análisis de varianza.

Diagnóstico de Multicolinearidad. Muestra el Factor de Influencia de la Variable (FIV) y los indicadores de tolerancia de las variables incluidas en el modelo.

Prueba Durbin-Watson. Analiza la independencia de los errores y los estadísticos de los residuos.

Interpretación de los Resultados

Uno de los supuestos más importantes de la regresión múltiple que debe cumplirse tiene que ver con descartar la “multicolinearidad”. Para llevar a cabo el diagnóstico de multicolinealidad debería empezarse por conformar la matriz de correlaciones (ver Tabla 3.1). Esta matriz puede darnos una idea preliminar del grado de relación existente entre las VI. Nótese que en el ejemplo resumido en dicha tabla, si bien existe una correlación positiva y significativa entre las variables, ésta no es tan alta como para sospechar multicolinealidad.

Si encontramos una correlación entre estas variables de digamos .85 o más, existe una alta probabilidad de que las variables altamente correlacionadas expliquen simultáneamente la misma varianza de Y (o VD). A esto se le llama “multicolinealidad”. Por otro lado, cuando las VI se encuentran altamente correlacionadas se suele “inflar” el error estándar de sus coeficientes. A eso se conoce como “Factor de Inflación de la Varianza” (FIV). Esta es razón suficiente como para suspender el análisis.
Nomenclatura básica para la lectura de tablas. Para facilitar la interpretación de los resultados del análisis, ofrecemos aquí una descripción de los términos utilizados por el programa SPSS en la presentación de los mismos:

a) **R** es la medida de la correlación entre los valores observados y los valores predichos de la variable dependiente o de criterio. En nuestro ejemplo, correspondería a la correlación entre EDCTOTAL (Disposición a cambiar) reportados por nuestros sujetos y el nivel predicho de PVQLOGRO (valores de logro), TOTESTIM (valores de estimulación) y SEETOTAL (Autoeficacia emocional).

b) **R²** es el cuadrado de esta medida de correlación e indica la proporción de la varianza en la variable dependiente o de criterio que es explicada por el modelo. En nuestro ejemplo, el porcentaje de varianza en EDCTOTAL o disposición a cambiar, que se atribuye a PVQLOGRO (valores de logro), TOTESTIM (Valores de estimulación) y SEETOTAL (Autoeficacia emocional), en conjunto. Se trata de qué tan buena predicción de la variable dependiente o de criterio, podemos hacer si conocemos las variables predictoras. Sin embargo es posible también que R² pueda sobrestimar el éxito del modelo, por lo que es preciso ajustar su cálculo.

c) **R² Ajustado**, por lo tanto, toma en cuenta el número de variables en el modelo y el número de sujetos o participantes del estudio. Este valor constituye una apreciación más real de la varianza total explicada por el modelo.
d) **Beta** (o coeficiente estándar de regresión), es la medida de la fuerza de la influencia de cada variable independiente o predictora sobre la variable dependiente o de criterio. Por ejemplo, un valor beta de 2.2 indicaría que un cambio en una desviación estándar en la variable independiente o predictora, resulta en una alteración de 2.2 desviaciones estándar en la variable dependiente o de criterio. De esta manera, como lo señalamos anteriormente, a mayor valor de beta, mayor es el impacto del predictor sobre la variable criterio.

A continuación se presentan las tablas desplegadas por el SPSS:

<table>
<thead>
<tr>
<th>Tabla 3.2.</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Indicadores descriptivos (medias y desviaciones estándar) de cada una de las variables de análisis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Descriptive Statistics</td>
</tr>
<tr>
<td></td>
<td>Mean</td>
</tr>
<tr>
<td>EDCTOTAL</td>
<td>44.0186</td>
</tr>
<tr>
<td>PVQLOGRO</td>
<td>38.7642</td>
</tr>
<tr>
<td>STETOTAL</td>
<td>43.6214</td>
</tr>
<tr>
<td>TOTESTIM</td>
<td>24.4771</td>
</tr>
</tbody>
</table>

La Tabla 3.2 se produce con la opción “Descriptivas” y muestra las medias, las desviaciones estándares y el tamaño de la muestra.

La Tabla 3.3 ofrece detalles sobre las correlaciones entre cada par de variables. En ella, como mencionamos antes, no debería identificarse correlaciones excesivamente altas entre las variables independientes o predictoras y la variable dependiente o de criterio. Los valores encontrados en este ejemplo son aceptables.

La Tabla 3.4 deja claramente establecido el método elegido para la introducción de las variables. En este caso, “introducir” o “Enter”.

La Tabla 3.5 resume el comportamiento del modelo es una de las más importantes pues nos informa que en nuestra propuesta de modelo, las variables predictoras (valores de logro y de estimulación, y Auto-eficacia emocional) llegan a explicar el 72.3 por ciento de la varianza en la disposición al cambio. Podemos concluir, inicialmente que contamos con un relativamente buen modelo para predecir la disposición al cambio.
Tabla 3.3.
Correlaciones bivariadas entre las variables involucradas en el modelo, sus niveles de significación y el tamaño de la muestra

<table>
<thead>
<tr>
<th></th>
<th>EDCTOTAL</th>
<th>PVQLOGRO</th>
<th>SEETOTAL</th>
<th>TOTESTIM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pearson Correlation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EDCTOTAL</td>
<td>1.000</td>
<td>.239</td>
<td>.171</td>
<td>.170</td>
</tr>
<tr>
<td>PVQLOGRO</td>
<td>.239</td>
<td>1.000</td>
<td>.109</td>
<td>.239</td>
</tr>
<tr>
<td>SEETOTAL</td>
<td>.171</td>
<td>.109</td>
<td>1.000</td>
<td>.195</td>
</tr>
<tr>
<td>TOTESTIM</td>
<td>.170</td>
<td>.239</td>
<td>.195</td>
<td>1.000</td>
</tr>
<tr>
<td>Sig. (1-tailed)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EDCTOTAL</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
</tr>
<tr>
<td>PVQLOGRO</td>
<td>.000</td>
<td>.013</td>
<td>.000</td>
<td>.000</td>
</tr>
<tr>
<td>SEETOTAL</td>
<td>.000</td>
<td>.013</td>
<td>.000</td>
<td>.000</td>
</tr>
<tr>
<td>TOTESTIM</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
</tr>
<tr>
<td>N</td>
<td>417</td>
<td>417</td>
<td>417</td>
<td>417</td>
</tr>
</tbody>
</table>

Tabla 3.4.
Método de análisis elegido por el programa para el análisis de regresión múltiple

<table>
<thead>
<tr>
<th>Variables Entered/Removed</th>
<th>Model</th>
<th>Variables Entered</th>
<th>Variables Removed</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>TOTESTIM, SEETOTAL, PVQ LOGRO<sup>a</sup></td>
<td>Enter</td>
<td></td>
</tr>
</tbody>
</table>

^a All requested variables entered.

Tabla 3.5.
Resumen del modelo desplegando los indicadores más relevantes obtenidos

<table>
<thead>
<tr>
<th>Model</th>
<th>R</th>
<th>R Square</th>
<th>Adj. R Square</th>
<th>Std. Error of the Estimate</th>
<th>Durbin-Watson</th>
</tr>
</thead>
</table>
| 1 | .795^a | .757 | .723 | 8.5160 | 1.8791 |}

^a Predictors: [Constant], TOTESTIM, SEETOTAL, PVQLOGRO
^b Dependent Variable: EDCTOTAL

CAPÍTULO III

ANÁLISIS DE REGRESIÓN MÚLTIPLE

57
A continuación se exhibe la tabla de análisis de varianza (ANOVA), que nos permite verificar y evaluar el grado de significación general del modelo. Si el valor de F resulta ser p<.05, entonces tenemos un modelo significativo, tal como se refleja en la Tabla 3.6.

<table>
<thead>
<tr>
<th>Model</th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regression</td>
<td>10410.461</td>
<td>3</td>
<td>3470.153</td>
<td>157.319</td>
<td>.000*</td>
</tr>
<tr>
<td>Residual</td>
<td>9109.963</td>
<td>413</td>
<td></td>
<td>22.058</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>19520.373</td>
<td>416</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. Predictors: (Constant), TOTESTIM, SEETOTAL, PVQLOGRO
b. Dependent Variable: EDCTOTAL

La Tabla 3.7 resume los valores de los coeficientes beta estandarizados, dándonos la medida de la contribución de cada variable al modelo. Los valores altos de beta indican que las variables en cuestión constituyen predictores con efectos importantes sobre la variable dependiente o criterio. Por su parte, los valores t y los de significación (p) ofrecen también una idea general del impacto de cada variable independiente o predictora. De esta manera, un alto valor de t y una significación muy baja, nos dice que la variable respectiva tiene un impacto apreciable sobre la variable criterio. Para el caso de nuestro ejemplo, podemos asumir que las tres variables que componen el modelo ejerzan influencias importantes que permiten hacer una predicción sobre la variable dependiente o de criterio. Nótese que los valores de beta, respaldados por el estadístico t son todos significativos (menores que .05), lo que nos permite rechazar la hipótesis nula que señala que las variables independientes o predictoras por separado: PVQLOGRO (valores de logro), TOTESTIM (valores de estimulación) y SEETOTAL (Autoeficacia emocional), no ejercen ningún valor predictivo sobre la variable dependiente o de criterio (EDCTOTAL).

Adviértase también que la Tabla 3.7 incorpora también, en las últimas dos columnas, una estadística que permite llevar a cabo un diagnóstico de la colinealidad. Como ya se comentara páginas atrás, la multicolinealidad se produce cuando existe una fuerte relación entre las variables predictivas, de tal manera que alguna
de ellas resultan ser una función lineal de las otras. Son dos los indicadores que deben vigilarse: la "Tolerancia" y el "Factor de Inflación de la Varianza" (FIV, en sus siglas en inglés VIF).

<table>
<thead>
<tr>
<th>Model</th>
<th>B</th>
<th>Std. Error</th>
<th>Beta</th>
<th>t</th>
<th>Sig.</th>
<th>Tolerance</th>
<th>VIF</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>52.649</td>
<td>10.247</td>
<td></td>
<td>10.706</td>
<td>0.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PVLOGRO</td>
<td>1.028</td>
<td>0.237</td>
<td>0.382</td>
<td>4.957</td>
<td>0.000</td>
<td>0.339</td>
<td>1.065</td>
</tr>
<tr>
<td>SEETOTAL</td>
<td>0.668</td>
<td>0.162</td>
<td>0.331</td>
<td>4.522</td>
<td>0.007</td>
<td>0.358</td>
<td>1.044</td>
</tr>
<tr>
<td>TOTESTIM</td>
<td>1.051</td>
<td>0.226</td>
<td>0.353</td>
<td>4.649</td>
<td>0.002</td>
<td>0.214</td>
<td>1.094</td>
</tr>
</tbody>
</table>

a. Dependent Variable: EDCTOTAL

La Tolerancia es la medida de la correlación entre las variables independientes o predictoras y por lo tanto puede variar entre 0 y 1. Mientras más próximo a 0 es el valor de tolerancia de una variable, más fuerte es la relación que se establece entre ella y otro predictor. Por lo tanto, si se detectan valores de tolerancia próximos a 0, es probable que estemos frente a un efecto indeseable de colinealidad y por lo mismo, es aconsejable excluir la variable independiente o predictora del modelo.

El factor FIV, por el contrario, señala multicolinearidad cuando sus valores asociados a cada variable son más bien altos (mayores que 9). Ello indica que una fuerte relación entre las variables predictoras incrementan (inflan) el error estándar de sus coeficientes, lo que aconseja su eliminación del modelo.

Diagnóstico de los Residuos

El error en la regresión múltiple se conoce como "residuo". Se trata de una medida de la exactitud de la predicción. Se espera que haya una correspondencia entre el número de casos del estudio y el número de puntos registrados en la línea de la tendencia, los mismos que deberían estar normalmente distribuidos. Los
autores (Giles, 2008, Jaccard y Turrisi, 2003) señalan por lo general tres formas de incumplimiento de estos supuestos:

a) la falta de linealidad de la relación, los datos pueden seguir una tendencia curva o cuadrática;

b) la anormalidad de la distribución de los datos en torno a la línea de tendencia; y

c) la heterocedasticidad en las varianzas.

Figura 3.4. Cuadro de diálogo que permite acceder al diagnóstico residual, mediante gráficos

Tratándose del SPSS, el diagnóstico de los residuos puede llevarse a cabo con ayuda de gráficas, las mismas que se pueden obtener creando temporal y automáticamente las siguientes variables: ZPRED (valores predichos), ZRESID (residuos tipificados), DRESID (residuos eliminados), ADJPRED (valores predichos ajustados), SRESID (residuos studentizados), y SDRESID (residuos studentizados eliminados) (Lizasoain y Joarisi, 2003).

Para ingresar al cuadro de diálogo que nos permite acceder a las gráficas para el diagnóstico de los residuos, elijase "gráficos" después de haber seleccionado Análisis - Regresión- Linear. Estas instrucciones permitirán desplegar la ventana que se muestra en la Figura 3.4 A continuación arrástrese ZRESID (Residuos
típicamente a la casilla Y y ZPRED (Valores predichos) a la casilla X y selecciónese en la sección de "Gráficos de residuos tipificados" las opciones "Histograma" y "Gráfico de probabilidad normal". Esta acción producirá tres gráficos diferentes que permitirán verificar los supuestos del modelo.

De esta manera, para explorar los supuestos de la linealidad y homocedasticidad, debe examinarse la gráfica los valores predichos tipificados o los residuos tipificados (ZPRED y ZRESID respectivamente). Lo esperado o lo deseable es que la nube de puntos obtenida se distribuya en una banda horizontal con respecto a los ejes del plano cartesiano, significando la ausencia de cualquier tipo de tendencia. Para el caso de nuestro ejemplo, el gráfico obtenido sigue la tendencia esperada con valores que van aproximadamente entre -2 y +2 (ver Figura 3.5).

![Scatterplot](image-url)

Figura 3.5. Gráfica de valores predichos tipificados, mostrando la ausencia de cualquier tipo de tendencia

Complementariamente, para verificar el supuesto de la normalidad, se deberá obtener el histograma de residuos tipificados y el gráfico de probabilidad normal P-P de residuos tipificados. Los resultados deben ser similares a los exhibidos en la Figura 3.6. Tal como puede advertirse, la distribución de los residuos de nuestro ejemplo sigue el patrón de normalidad esperado. De manera similar, el gráfico de probabilidad muestra
coincidencia entre los valores de probabilidad acumulada esperada con los de probabilidad acumulada observada, conforriándose en consecuencia una sola línea de tendencia diagonal.

Figura 3.6. Histograma de residuos tipificados y gráfico de probabilidad normal P-P de residuos tipificados

Finalmente, la independencia de los errores se advierte a través de la aplicación de la "d" de Durbin – Watson. Si no existe intercorrelación de residuos, el valor puede variar entre 0 y 4. En el caso de nuestro ejemplo, el valor de "d" fue de 1.8791, lo que puede dejarnos tranquilos (ver Tabla 3.5).

Diagnóstico de Datos Atípicos

Durante el Capítulo II, a propósito de las correlaciones, se hizo mención acerca de las distorsiones introducidas por la existencia de datos atípicos. Aquí debemos añadir, coincidiendo con Giles, (2008), que como la regresión múltiple es una técnica de maximización estadística, esto es, que busca el mejor ajuste posible de la solución al problema, resulta altamente sensible a los casos atípicos. Un caso atípico es por ejemplo, una respuesta excesivamente baja o alta a un cuestionario que la hace única y discrepante en la distribución. En el SPSS están disponibles
tres tipos de estadísticas para poner a prueba la influencia de los datos atípicos:

a) la prueba de Weisberger detecta (a través de la prueba t) las altas discrepancias o distancias con respecto a la línea de regresión tratándose de la variable predicha (Y);

b) la prueba de distancia de Mahalanobis, que detecta las distancias entre las medias de una o más variables independientes o predictoras. Los valores normales caen entre 0 y 1, valores mayores indican atipicidad;

c) la prueba de distancia de Cook, se aplica para determinar el grado de influencia de un caso atípico sobre el análisis total. Los valores obtenidos por encima de 1, indican la existencia de mucha influencia.

Reporte de resultados

En la producción del reporte de resultados de un análisis de regresión múltiple, se debe poner especial atención en la proporción de varianza explicada por el modelo, su significancia y la significancia de las variables independientes o predictoras. Reportando los resultados de nuestro ejemplo, deberíamos entonces señalar lo siguiente:

Empleando el método “introducir” se cuenta con un modelo significativo ($F_{5,413} = 157.319, p = .000$) y un R^2 Ajustado = .723 con las siguientes variables significativas:

<table>
<thead>
<tr>
<th>Variables independientes (predictoras)</th>
<th>Beta</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valores de logro</td>
<td>.322</td>
<td>.000</td>
</tr>
<tr>
<td>Valor de Estimulación</td>
<td>.353</td>
<td>.002</td>
</tr>
<tr>
<td>Auto-eficacia Emocional</td>
<td>.331</td>
<td>.007</td>
</tr>
</tbody>
</table>

CAPÍTULO III

ANÁLISIS DE REGRESIÓN MÚLTIPLE
La técnica de la regresión logística se originó en la década de los 60 con los trabajos de Cornfield, Gordon y Smith (1961). En 1967, Walter y Duncan la utilizaron ya en la forma que la conocemos actualmente para estimar la probabilidad de ocurrencia de un proceso en función de ciertas variables. Su uso se populariza desde principios de los 80 como consecuencia de los adelantos tecnológicos ocurridos en el campo de la computación.

Tal como vimos en el capítulo anterior, el análisis de regresión múltiple llamado también binario multivariante, constituye una herramienta importante para estudiar la influencia de varias variables independientes conocidas como predictores, sobre una variable dependiente o criterio. Con la regresión múltiple es posible ajustar un modelo que permita identificar una serie de variables que expliquen o predigan un efecto concreto.

El análisis de regresión logística constituye un proceso bastante similar. Sin embargo, posee características que lo hacen más funcional y en ocasiones más aplicable que la regresión múltiple, sobre todo para el caso de la psicología o las ciencias sociales. La razón de ello es que este procedimiento se utiliza para predecir una variable dependiente categórica con características dicotómicas (Ato y García 1996), es decir la variable Y (o VD)
podrá tomar el valor “0” si el hecho no ocurre o “1” si el hecho ocurre (Ejemplo, vivo – muerto; sano – enfermo; ansioso – no ansioso, etc.). Esta circunstancia es denominada binomial ya que solo tiene dos posibles resultados y su probabilidad es constante cada vez que se repite. Este estado binomial está caracterizado por la probabilidad de ocurrencia, representada por \(p \) y la probabilidad de no ocurrencia representada por \(q \). Esto hace que este tipo de análisis sea ideal para aplicarse en los estudios de casos y controles, estudios en los que los casos tienen algo (alguna característica, un efecto o un desenlace) y los controles no (Aguayo, 2007).

Los modelos de regresión logística son modelos que permiten estudiar si una variable categórica (o dependiente), depende o no de otras u otras variables predictoras o independientes. La distribución condicional de la variable dependiente, al ser categórica, no puede distribuirse normalmente, toma la forma de una distribución binomial y, en consecuencia la varianza no es constante, encontrándose situaciones de heterocedasticidad\(^1\) (Alderete, 2006). En otras palabras, digamos que lo que se pretende mediante la regresión múltiple es expresar la probabilidad de que ocurra el evento en cuestión como función de ciertas variables que se presumen relevantes o influentes.

Por ejemplo, podríamos estar interesados en el valor predictivo de ciertos indicadores llamados “de riesgo” sobre el consumo temprano de tabaco en adolescentes. En este caso el consumo de tabaco podría adoptar una condición dicotómica con dos valores: “0 = no fuma antes de los 16 años” y “1 = fuma antes de los 16 años”.

Por otro lado, las variables independientes o predictoras (\(X \)) pueden ser de cualquier naturaleza, es decir cualitativas o cuantitativas. Por ejemplo, podríamos suponer que un predictor categórico sea el hecho de que alguno de los padres fumara (0 = no fuma y 1 = si fuma), o que otro predictor cuantitativo considere, por ejemplo, el ingreso económico de la familia.

Razón de Probabilidad o Odds Ratio

La ecuación que resulta de la regresión logística es muy similar

\(^1\) Como hemos visto la heterocedasticidad hace referencia a la falta de homogeneidad de las varianzas, aspecto este que viola los supuestos de la aplicación del análisis de regresión múltiple.
a la que se produce en la regresión múltiple. En ambas, cada variable predictora posee un coeficiente asociado que puede ser interpretado a la manera de los valores beta. Sin embargo, en el caso de la regresión logística, la información se relaciona con la "razón de probabilidad" (mejor conocida como "Odds Ratio"), de ser parte de una categoría u otra (0 ó 1). Los coeficientes son por lo tanto logaritmos de tales razones. Veamos con algo de detalle el concepto de odds ratio:

Los odds ratio (OR) consisten, como hemos dicho, en medidas que cuantifican la probabilidad que representa poseer el factor correspondiente respecto a no poseerlo, suponiendo siempre que el resto de las variables del modelo permanecen constantes. De una manera general, podemos decir que el odds ratio asociado a un suceso es el cociente entre la probabilidad de que ocurra frente a la probabilidad de que no ocurra y se representa así:

\[OR = \frac{p}{1-p} \]

donde \(p \) es la probabilidad del suceso y \(1-p \) es la probabilidad de que no ocurra dicho suceso. A partir de los coeficientes de regresión (\(\beta \)) de las variables independientes introducidas en el modelo se puede obtener directamente la \(OR \) de cada una de ellas, que corresponde al riesgo de tener el resultado o efecto evaluado para un determinado valor (\(p \)) respecto al valor disminuido en una unidad (\(1-p \)).

Así, por ejemplo, podemos calcular el odds ratio de fumar a edad temprana cuando uno o ambos padres fuman al momento de la indagación. Por otro lado, podríamos también calcular el odds ratio de la presencia de la conducta de fumar a temprana edad cuando el consumo de tabaco por parte de los padres no existe. Luego, si dividimos el primer odds ratio entre el segundo, hemos calculado un cociente, esto es un odds ratio, que de alguna manera cuantifica cuánto más probable es el consumo temprano de tabaco cuando los padres fuman (primer odds ratio) respecto a cuando no fuman (segundo odds ratio). Esta noción es parecida a la de

2 Para una descripción completa de la traducción de estos términos, consúltese con Tapia y Nieto (1993).

3 OR = e, siendo "e" la base de los logaritmos neperianos (una constante cuyo valor es 2.718).
riesgo relativo y que corresponde al cociente de la probabilidad de que aparezca un suceso (consumo de tabaco a temprana edad) cuando está presente el factor consumo de tabaco por parte de los padres, respecto a cuando no lo está.

Poniéndole números ficticios al ejemplo tendríamos que:

<table>
<thead>
<tr>
<th>Tabla 4.1.</th>
<th>Odds ratio de fumar a edad temprana cuando ambos padres fuman al momento de la indagación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consumo de Tabaco</td>
<td></td>
</tr>
<tr>
<td>Modelos Familiares</td>
<td>Consumen Temprano</td>
</tr>
<tr>
<td>Padres fumadores</td>
<td>50 (a)</td>
</tr>
<tr>
<td></td>
<td>(.303)</td>
</tr>
<tr>
<td>Padres no fumadores</td>
<td>35 (c)</td>
</tr>
<tr>
<td></td>
<td>(.184)</td>
</tr>
<tr>
<td>Total</td>
<td>85</td>
</tr>
</tbody>
</table>

En la tabla anterior el **odds ratio** para la categoría “fumadores tempranos”, cuando el modelo familiar es proporcionado por padres fumadores es: .303/.696\(^4\) = .435 y cuando el modelo familiar corresponde a padres no fumadores el **odds ratio** es:.184/.815 = .225. Esto indica que es mayor la probabilidad de observar un joven fumador temprano cuando el modelo familiar está determinado por la presencia de padres fumadores. El valor final del **Odd Ratio** se obtiene dividiendo el **odds ratio** para la categoría de fumadores tempranos con modelos de padres fumadores entre el odds de no fumadores tempranos con padres no fumadores (.435/.225 = 1.92)

Otra forma de calcular el **odds ratio** es multiplicando de manera cruzada (a * d y b * c) y dividiendo luego los productos entre sí. En nuestro ejemplo: 50 x 155 = 7750; 115 x 35 = 4025. Luego 7750/4025 = 1.92. Nótese que se obtiene el mismo resultado (ver Tabla 4.1).

Un valor de 1 en el **odds ratio** global quiere decir que existe una

\(^4\) Estos valores se obtienen dividiendo el dato crudo de fumadores tempranos que tienen padres fumadores (50) o de fumadores no tempranos que tienen también padres fumadores (115), entre el total de padres fumadores (165).

CAPÍTULO IV
REGRESIÓN LOGÍSTICA

67
probabilidad similar en ambas categorías de la variable. Un valor mayor que 1 indica que esa categoría tiene mayor probabilidad de ocurrencia y en nuestro ejemplo, corresponde por tanto a un factor de riesgo. Por el contrario, si el valor es negativo el *odds ratio* será menor que 1 y se tratará de un factor de protección.

Tabla 4.2.

Guía para la interpretación de riesgos a partir de los rangos de OR

<table>
<thead>
<tr>
<th>Rango de OR</th>
<th>Interpretación</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0 a 0.3</td>
<td>Beneficio grande</td>
</tr>
<tr>
<td>0.4 a 0.5</td>
<td>Beneficio moderado</td>
</tr>
<tr>
<td>0.6 a 0.8</td>
<td>Beneficio insignificante</td>
</tr>
<tr>
<td>0.9 a 1.1</td>
<td>Sin efecto</td>
</tr>
<tr>
<td>1.2 a 1.6</td>
<td>Riesgo insignificante</td>
</tr>
<tr>
<td>1.7 a 2.5</td>
<td>Riesgo moderado</td>
</tr>
<tr>
<td>> 2.6</td>
<td>Riesgo elevado</td>
</tr>
</tbody>
</table>

La Tabla 4.2, orienta la interpretación del *odds ratio* cuando el propósito es evaluar las condiciones probables asociadas al riesgo o a la protección. Esta interpretación es válida para poblaciones grandes.

El Cálculo de la Regresión Logística

Según Aguayo (2007) las acciones y decisiones preliminares que el investigador deberá tomar en cuenta para el cálculo de la regresión logística son las siguientes:

1. **Identificar con la mayor precisión posible qué variables han de ser consideradas como predictoras.** Este paso supone una consideración muy cuidadosa de los elementos teóricos existentes, asociados a la temática que se investiga y al rol que jugaron las variables predictoras o independiente en el marco de otras investigaciones similares. De no tomarse en cuenta esta advertencia, se podría oscurecer el análisis de la relación principal, generándose confusión. Las llamadas variables de confusión son variables externas a la relación principal que se analiza (no son un mero paso intermedio entre la exposición
y la respuesta), relacionadas con la variable independiente. Su presencia genera un sesgo o error al evaluar la relación entre las variables independientes o predictoras (X) y la dependiente o criterio (Y).

2. Identificar las variables de interacción. Se trata de conocer las características de la relación entre el factor de estudio (tratamiento) y el efecto (resultado), buscando aportar datos interesantes sobre los mecanismos causales. De detectarse este efecto, debe mostrarse, no controlarse.

3. Reflexionar sobre el sentido principal del estudio. Esto se puede realizar:

 a) Prediciendo una determinada respuesta a partir de las variables predictoras o independientes. Esto debería ayudarnos a buscar, entre todos los posibles modelos, el más parsimonioso, es decir, el que prediga el efecto de manera más precisa y válida, incorporando el menor número de variables posibles (independientes y de control). Debemos recordar que introducir variables poco relevantes tiende a enmascarar el proceso de modelado y puede llevar a estimaciones poco válidas.

 b) Calculando los riesgos ajustados o controlados para cada variable predictora o independiente y determinando el conjunto de variables que será oportuno controlar en el análisis, incluyendo aquellas que tengan una adecuada justificación teórica. Esta es una estrategia muy común en investigación no experimental, donde la estimación del efecto (Y) debe realizarse ajustando o controlando las variables de control (o factores que causan confusión).

4. También de manera preliminar, convendría llevar a cabo una correlación bivariada, analizando la naturaleza de las relaciones entre la variable dependiente o de criterio con cada una de las variables predictoras o independientes. Aquellas variables predictoras o independientes que muestren asociaciones estadísticamente significativas con la variable dependiente deberían ser tenidas en cuenta para su inclusión en el modelo multivariado.

5. A continuación debe decidirse de qué manera se medirá la
significación de la fuerza de la relación. Ello dependerá de la naturaleza de las variables incorporadas en el estudio. Así, si se trata de una variable categórica (por ejemplo una variable medida con una escala nominal), la fuerza y significación de la asociación y la precisión del análisis deberán ser evaluadas mediante los valores Odds Ratio (OR) y el contraste deberá ser analizado con la ayuda de la Chi Cuadrado (X²).

Si se trata de una variable cuantitativa, la fuerza de la relación, su significación y la precisión de análisis deben ser medidas con la ayuda del Análisis de Varianza (ANOVA) o una t para la comparación de medias.

6. Escójase uno de los métodos disponibles para incorporar las variables predictoras o independientes (covariables en el SPSS) en el modelo.

7. En caso de que las variables categóricas contengan más de dos categorías, defínanse las llamadas variables "dummy". Una variable dummy es creada por el investigador para representar la pertenencia a un grupo. Por ejemplo en el caso de la variable sexo, podemos crear una variable dummy y asignar 1 a todos los varones y 0 a todas las mujeres. Cuando la variable cualitativa tiene más de dos valores, será necesario especificar más de una variable dummy para clasificar los diferentes grupos. Por ejemplo, supongamos que tenemos como variable predictora la fe religiosa que puede adoptar tres valores: católica, protestante y musulmana. En este caso requeriremos transformarla en un número (c-1), siendo “c” el número de valores o de categorías distintas de dicha variable. Para nuestro ejemplo, 3-1 = 2 variables dummy para representar fe religiosa: 1 = todos los católicos y 0 = los demás; para la segunda variable dummy 1= todos los protestantes y 0 los demás. Podríamos definir otra variable dummy para la categoría musulmanes, 1 para éstos y 0 para el resto, esta definición sería redundante puesto que de las dos primeras se sabría quienes son católicos y protestantes y por lo tanto todos los que no están comprendidos en estas categorías son musulmanes; a este grupo se le llama “grupo de referencia”. Si creamos una tercera variable, corremos el riesgo de distorsionar los valores produciendo correlaciones negativas irreales (Jaccard y Turrisi, 2003).

8. Es razonable que se ponderé el número de variables a introducir en el modelo de regresión logística; unas pocas
quizás no predigan mucho, muchas quizás introduzcan mucho error generando imprecisión. Debe tenerse en cuenta que los cálculos de la regresión se hacen a través del método de máxima verosimilitud con los datos de la muestra. Una buena regla es ajustarse a la relación “una variable en el modelo por cada diez individuos en la muestra analizada” (Aguayo, 2007).

Cálculo de la regresión logística usando SPSS

Con el propósito de ilustrar el empleo del SPSS en el análisis de la regresión logística, utilizaremos un ejemplo concreto que ayude a reconocer los pasos que deben darse a lo largo del proceso.

Un estudio pretendió predecir la actitud hacia el cambio a partir de variables predictoras o independientes tales como: edad, sexo, lugar de nacimiento, residencia permanente y religión. Las hipótesis que soportaban el estudio asumían que el cambio podría ser predicho cuando la edad de la muestra estaba por debajo de los 40 años, cuando se trataba de una población fundamentalmente femenina, habitando nacido en el sector rural aunque con residencia urbana. El estudio consideró una muestra rural de 80 personas de ambos sexos con edades entre 17 y 75 años.

En primera instancia se exploraron las correlaciones bivariadas entre las variables consideradas en el estudio. La Tabla 4.3 presenta esta información.

| Correlaciones bivariadas entre las variables incorporadas en el estudio |
|---------------------------|----------------|----------------|----------------|----------------|----------------|----------------|
| | Edad | Sexo | Lugar de nacimiento | Residencia permanente | Religión | Cambio |
| Edad | .607" | -.055 | -.809" | -.095 | -.775" | |
| Sexo | -.607" | .025 | .512" | .017 | .532" | |
| Lugar de nacimiento | .055 | .025 | .175 | .225" | .180 | |
| Residencia permanente | -.809" | .512" | .175 | .098 | .776" | |
| Religión | -.085 | .017 | .225* | .098 | .038 | |
| Cambio | -.775"* | .532** | .180 | .776** | .038 | |

CAPÍTULO IV
REGRESIÓN LOGÍSTICA
De dicha tabla se desprende la siguiente información preliminar:

a) Las variables de edad, sexo (femenino) y residencia permanente (urbana) presentan correlaciones altas y significativas con la actitud hacia el cambio, aunque no lo suficiente como para sospechar colinealidad;

b) las variables lugar de nacimiento y religión no presentan relaciones significativas con la variable criterio o dependiente, por lo que se aconseja eliminarlas del modelo;

c) la variable edad muestra una correlación negativa con actitud para el cambio.

De esta primera aproximación a los datos, podemos ya asumir una decisión preliminar: reconsiderar el modelo excluyendo las variables que no demostraron tener una relación sólida con la Y (VD). La variable “residencia permanente” fue también desestimada debido a que con ella, fue difícil lograr una solución aceptable al cabo de 20 iteraciones⁵.

Con estos elementos y habiendo reconsiderado la conformación del modelo, vayamos nuevamente al SPSS (versión 15), escojamos ANALIZAR, luego REGRESION, después LOGISTICA BINARIA, tal como se muestra en la Figura 4.1 Esta operación permitirá desplegar el cuadro de diálogo que se presenta a continuación en la Figura 4.2 En dicho cuadro, debe introducirse, en la casilla correspondiente a la variable dependiente que deseamos modelizar, (“actitud hacia el cambio”) y las dos predictoras (“edad” y “sexo”), en la casilla correspondiente a covariables. Asimismo, elijase para la casilla correspondiente a método, la opción “Adelante con la modalidad de Wald”. Esta opción metodológica, como en el caso de la Regresión Múltiple, supone la inclusión de todas las variables predictoras por pasos para contrastar las nuevas variables a introducir o sacar del modelo. Luego, elijase el botón “categoría” y selecciónese las variables predictoras o independientes que son categóricas y presione “continuar”.

⁵ El término “iteración” hace referencia a la repetición de una serie de instrucciones en un programa de computadora. La recursividad es un ejemplo de iteración. Cuando se dice que el resultado sobrevino al cabo de 5 iteraciones, se entiende que el programa tuvo que repetir la operación 5 veces antes de lograr el mismo resultado matizado.
Figura 4.1. Ingreso al programa para calcular la regresión logística desde el editor de datos del SPSS

Figura 4.2. Cuadro de diálogo que permite la introducción de las variables para su análisis así como el método empleado

CAPÍTULO IV
REGRESIÓN LOGÍSTICA
Inmediatamente después, en la parte inferior del cuadro de diálogo visible, elijase el botón “Guardar”.

Figura 4.3. Cuadro de diálogo que despliega la opción “guardar” para el análisis de valores pronosticados, probabilidades y de residuos

En el cuadro de diálogo resultante (Figura 4.3) márquese las opciones; en la sección de “valores pronosticados”, elijase “probabilidades”; en la sección “Influencia” marque “Prueba de Cook. En la sección de “Residuos”, marque las opciones “no tipificados” y “tipificados”, seguidamente pinche en “continuar”.

Finalmente, en el cuadro de diálogo visible, elegir “Opciones”. Esta operación desplegará el cuadro de diálogo respectivo de donde elegirá de la sección “Estadísticos y gráficos” “gráficos de clasificación” y “Bondad de ajuste de Hosmer – Lemeshow, "correlaciones de estimaciones” e “Historial de iteraciones”.

En la sección “Mostrar”, la opción “En cada paso” se encuentra determinada por defecto. Presiónese “Continuar” y tras la aparición del cuadro de diálogo inicial, presione “Aceptar”. Esta operación desplegará la totalidad de los cuadros que deberán someterse a análisis.
Figura 4.4. Cuadro de opciones para elegir estadísticas y gráficos complementarios

Interpretación de Resultados

La primera tabla obtenida es de información (Tabla 4.4). Presenta un resumen del número de casos (N), introducidos, los casos seleccionados para el análisis y los excluidos o perdidos debido a casos faltantes (missing values). En este ejemplo, todos los casos han sido incluidos en el análisis y no tenemos casos perdidos ni casos no seleccionados.

Tabla 4.4.
Resumen del procesamiento de los casos

<table>
<thead>
<tr>
<th>Casos no ponderados[a]</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Casos seleccionados</td>
<td>80</td>
<td>100.0</td>
</tr>
<tr>
<td>Incluidos en el análisis</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Casos perdidos | 0 | .0%
| Total | 80| 100.0 |
| Casos no seleccionados | 0 | .0%
| Total | 80| 100.0 |

[a] Si está activada la ponderación, consulte la tabla de clasificación para ver el número total de casos.
La Tabla 4.5 presenta el tipo de codificación adoptada para la variable dependiente. Como ésta es categórica (lo que justifica la aplicación de la regresión logística), el valor 0 señala no cambio y el valor 1 cambio.

Tabla 4.5.
Codificación de la variable dependiente

<table>
<thead>
<tr>
<th>Valor original</th>
<th>Valor interno</th>
</tr>
</thead>
<tbody>
<tr>
<td>No cambio</td>
<td>0</td>
</tr>
<tr>
<td>Si cambio</td>
<td>1</td>
</tr>
</tbody>
</table>

Es importante que el valor 1 indique a la categoría de la variable dependiente que está siendo evaluada ("Si cambio", en nuestro caso), de esta manera, se clarifica que la probabilidad de cambiar se incrementa por la acción de la variable independiente. Esta es la categoría sobre la que se calcula la probabilidad de ocurrencia o evento favorable.

Tabla 4.6.
Codificaciones de variables categóricas

<table>
<thead>
<tr>
<th>Frecuencia</th>
<th>Codificación de parámetros</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td></td>
</tr>
<tr>
<td>Sexo</td>
<td>Mujeres</td>
</tr>
<tr>
<td></td>
<td>47</td>
</tr>
<tr>
<td>Varones</td>
<td>33</td>
</tr>
</tbody>
</table>

La Tabla 4.6 resume la codificación empleada con las variables independientes o predictoras (covariables en el SPSS). Como nuestro ejemplo incorpora dos variables categóricas, queda claro que para la variable sexo se codificó con 1 para mujeres y 0 para varones. La tabla enseña además las frecuencias absolutas de cada valor. La variable edad es cuantitativa y por lo mismo no figura en dicha tabla.
Bloque 0: Bloque inicial

En este bloque se calcula la verosimilitud del modelo cuando éste solo presenta la constante sin valor predictivo; es decir, sin tomar en cuenta las variables independientes o predictoras. Para la estimación del modelo se emplea el método de estimación por máxima verosimilitud que no establece restricción alguna respecto de las características de las variables predictoras, éstas pueden ser nominales, ordinales o intervalares (recuérdese que en la regresión múltiple se utiliza el procedimiento de los mínimos cuadrados). En el procedimiento de máxima verosimilitud se seleccionan las estimaciones de los parámetros que hacen posible que los resultados observados sean lo más verosímiles posibles. A la probabilidad de los resultados observados, dadas las estimaciones de los parámetros, se la denomina verosimilitud (Alderete, 2006).

El cálculo de la verosimilitud se realiza con una lógica iterativa, es decir, en base a una serie de intentos hasta conseguir un ajuste adecuado del modelo. En nuestro ejemplo, el modelo fue ajustado en 3 iteraciones o intentos6; decimos entonces que la solución converge o se satura, pues un mayor número subsecuente de iteraciones no modifica el valor logrado y solo lo repite.

<table>
<thead>
<tr>
<th>Tabla 4.7.</th>
<th>Historial de iteraciones (a,b,c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iteración</td>
<td>-2 log de la verosimilitud</td>
</tr>
<tr>
<td>Paso 0</td>
<td>106.820</td>
</tr>
<tr>
<td>2</td>
<td>106.819</td>
</tr>
<tr>
<td>3</td>
<td>106.819</td>
</tr>
</tbody>
</table>

a En el modelo se incluye una constante.
b -2 log de la verosimilitud inicial: 106.819
c La estimación ha finalizado en el número de iteración 3 porque las estimaciones de los parámetros han cambiado en menos de .001.

6 A cada intento se le llama también “bucle”.

CAPÍTULO IV
REGRESIÓN LOGÍSTICA
El estadístico que se muestra en la Tabla 4.7 y que valora la verosimilitud (likelihood) del modelo, es decir qué tan bien el modelo se ajusta a los datos, se conoce como “-2 Log likelihood” (-2LL). La tabla ofrece también información sobre el valor del coeficiente resultante (106.819). Debemos recordar que un buen modelo es aquel que da lugar a una verosimilitud grande lo que supone valor de -2LL pequeño. El -2LL se evalúa mediante el estadístico Chi cuadrado. La Chi cuadrado contrasta la hipótesis nula postulando que los coeficientes de todos los términos excepto la constante, son cero.

<table>
<thead>
<tr>
<th>Tabla 4.8.</th>
<th>Tabla de clasificación (a, b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observada</td>
<td>Pronosticado</td>
</tr>
<tr>
<td>Cambio</td>
<td>Porcentaje correcto</td>
</tr>
<tr>
<td>cambio</td>
<td>No cambio</td>
</tr>
<tr>
<td>Paso 0</td>
<td>Cambio</td>
</tr>
<tr>
<td></td>
<td>Cambio</td>
</tr>
<tr>
<td>Porcentaje global</td>
<td>61.3</td>
</tr>
</tbody>
</table>

a) En el modelo se incluye una constante.
b) El valor de corte es .500

La Tabla 4.8 presenta los datos del “modelo nulo” es decir los datos sin incluir la información de las variables predictoras. Se realiza la predicció con la única información de los datos observados de la variable dependiente. Permite evaluar el ajuste del modelo de regresión, comparando los valores predichos con los valores observados, con un valor de corte de 0.5. Esto significa que se fija un punto de corte de la probabilidad de la variable dependiente (Y) para clasificar a los individuos. Esto es, para los sujetos que se toman en cuenta en la ecuación, se calcula una probabilidad menor de 0.5 clasificándolos como “no cambio” y mayor que 0.5, clasificándolos como dispuestos al cambio.

7 Debido a que el valor de la verosimilitud (likelihood) es muy pequeño (comprendido entre 0 y 1), se ofrece el logaritmo neperiano que consiste en un valor negativo (el menos 2 veces el logaritmo neperiano o -2LL).
En la Tabla 4.8 se presenta también la clasificación de los casos según su ocurrencia y según la predicción realizada en función de dicho modelo nulo. Como puede observarse, habría un 100% de acierto del pronóstico de no cambio y ningún acierto en el pronóstico de cambio, por lo cual el porcentaje total de acierto es de 61.3%. En este primer paso, el modelo ha clasificado correctamente un 61.3 por ciento de los casos.

<table>
<thead>
<tr>
<th>Tabla 4.9.</th>
<th>Variables que están en la ecuación: estadísticos estimados del modelo nulo (Paso 0)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
</tr>
<tr>
<td>Paso 0</td>
<td>Constante</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tabla 4.10.</th>
<th>Variables que no están en la ecuación</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Puntuación</td>
</tr>
<tr>
<td>Paso 0</td>
<td>Variables</td>
</tr>
<tr>
<td></td>
<td>Edad</td>
</tr>
<tr>
<td>Estadísticos globales</td>
<td></td>
</tr>
</tbody>
</table>

En las Tablas 4.9 y 4.10, se presentan, como ya se dijo, los parámetros del modelo nulo: B o constante, el error estándar (ET) correspondiente, el estadístico Wald, los grados de libertad de dicho estadístico, el nivel de significación y el Exponencial de B. Como puede verse, el estadístico Wald no es significativo, es decir que B no difiere significativamente de 0 y por lo tanto no produce cambio sobre la variable dependiente. En la primera tabla, solo aparece la constante, sin incluir las variables edad y sexo. En la segunda tabla vemos, sin embargo, que el indicador Wald es significativo para las tres variables que aún no fueron incluidas en el modelo (.000) lo que indicaría que el proceso automático por pasos debería continuar con la incorporación de las variables en la ecuación (Aguayo, 2007).

En consecuencia, seguidamente, se presentan los datos según el
método de introducción de las variables escogido: introducir las variables por pasos hacia adelante en la modalidad Wald.

Bloque 1: Método = Por pasos hacia adelante (Wald)

<table>
<thead>
<tr>
<th>Iteración</th>
<th>-2 log de la verosimilitud</th>
<th>Coeficientes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Constante</td>
</tr>
<tr>
<td>Paso 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>57.737</td>
<td>4.629</td>
</tr>
<tr>
<td>2</td>
<td>49.170</td>
<td>7.378</td>
</tr>
<tr>
<td>3</td>
<td>47.352</td>
<td>9.305</td>
</tr>
<tr>
<td>4</td>
<td>47.206</td>
<td>10.042</td>
</tr>
<tr>
<td>5</td>
<td>47.204</td>
<td>10.122</td>
</tr>
<tr>
<td>6</td>
<td>47.204</td>
<td>10.122</td>
</tr>
</tbody>
</table>

a Método: Por pasos hacia adelante (Wald)
b En el modelo se incluye una constante.
c -2 log de la verosimilitud inicial: 106.819
d La estimación ha finalizado en el número de iteración 6 porque las estimaciones de los parámetros han cambiado en menos de .001.

En la Tabla 4.11, se presenta el proceso de iteración incluyendo esta vez las variables predictoras o independientes además de la constante (la misma que ya fuera incorporada en el paso previo). En ella se puede apreciar la reducción de los valores de -2LL. Mientras que en el bloque 0 inicial, este valor era de 106.819, en el bloque 1 con la metodología pasos hacia adelante (Wald), el nuevo valor llega a 47.204. Dicho proceso culmina con 6 iteraciones. Los coeficientes calculados son los siguientes: para la constante 10.122 y para edad -.219.

<table>
<thead>
<tr>
<th>Pruebas omnibus sobre los coeficientes del modelo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chi-cuadrado</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>Paso</td>
</tr>
<tr>
<td>Bloque</td>
</tr>
<tr>
<td>Modelo</td>
</tr>
</tbody>
</table>

CAPÍTULO IV
REGRESIÓN LOGÍSTICA
La Tabla 4.12 de "Prueba Omnibus" para los coeficientes del modelo, ofrece los resultados de las pruebas sobre la disminución de las "desviaciones" (otros autores las llaman "desvianzas") o lo que es igual, la ganancia obtenida en cada modelo. Recuérdese que cuanto menor es -2LL mejor es el ajuste del modelo. Esta valoración se realiza con la Chi cuadrado. Nótese que la tabla presenta tres entradas: paso, bloque y modelo.

La fila correspondiente a "Paso" informa sobre el cambio en la verosimilitud de -2LL entre pasos sucesivos, durante la construcción del modelo, contrastando la hipótesis nula de que los coeficientes de las variables incorporadas en el último paso son igual a 0.

La segunda fila de "Bloque" reporta el cambio en -2LL entre bloques de entrada sucesivos en el proceso de construcción del modelo. Si se adopta el método de introducción en un solo bloque, el valor de Chi cuadrado de bloque es el mismo que el del modelo.

La tercera entrada correspondiente a "Modelo", muestra la diferencia de valores -2LL de la constante y del modelo actual.

En este sentido, Alderete (2006) señala lo siguiente:

"Se puede observar para cada paso los valores de las siguientes entradas: Paso, Bloque y Modelo. La Chi cuadrado correspondiente a la fila modelo es la diferencia entre el -2LL para el modelo nulo y -2LL para el modelo actual. Se contrasta la hipótesis nula que postula que los coeficientes de todos los términos excepto la constante son igual a 0 (esto es comparable al test F global para la regresión múltiple). La Chi cuadrado correspondiente a la fila bloque es la diferencia -2LL entre los bloques de entrada sucesivos en la construcción del modelo. Como en general se introducen variables en un solo bloque la Chi cuadrado del modelo coincide con la Chi cuadrado del bloque. En la fila correspondiente a Paso la Chi cuadrado es la diferencia entre el -2LL entre pasos sucesivos. Se somete a prueba la hipótesis que los coeficientes de las variables introducidas en el último paso son igual a 0 (comparable al F de cambio en la regresión múltiple)" (p 62).

En nuestro ejemplo, como el modelo se construye en un solo paso, en todos los caso el valor de Chi cuadrado es el mismo y por lo tanto significativo en todos ellos, desechándose las hipótesis...
nulas. En la Tabla 4.13 se puede observar resumen del modelo. Adviértase que el modelo propuesto, conteniendo las nuevas variables introducidas, mejora el ajuste de manera significativa con respecto al modelo nulo.

<table>
<thead>
<tr>
<th>Paso</th>
<th>-2 log de la verosimilitud</th>
<th>R cuadrado de Cox y Snell</th>
<th>R cuadrado de Nagelkerke</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>47.204(a)</td>
<td>.525</td>
<td>.713</td>
</tr>
</tbody>
</table>

a La estimación ha finalizado en el número de iteración 6 porque las estimaciones de los parámetros han cambiado en menos de .001.

La tabla resumen permite evaluar de una manera global la validez del modelo predictivo. El -2LL de la Verosimilitud mide qué tan bien el modelo se ajusta a los datos. Arroja información sobre la desviación. Cuanto más pequeño es el valor, mejor será el ajuste.

El coeficiente de determinación R2 de Cox y Snell indica la utilidad explicatoria de las variables en la predicción midiendo la magnitud de su efecto, determinando la proporción de varianza de la variable dependiente explicada por las variables independientes o predictoras. Obsérvese en nuestro ejemplo que el coeficiente de determinación R2 de Cox y Snell es de .525 lo que señala que las variables predictoras del modelo (edad y sexo) llegan a explicar aproximadamente el 52 por ciento de la varianza de la disposición a cambiar. En otras palabras, la magnitud del efecto predictivo de nuestras variables edad y sexo se resume en dicho valor.

El coeficiente de Nagelkerke es una versión corregida de la R cuadrado de Cox y Snell y por lo tanto suele ser más acucioso que éste e informa acerca de la bondad de ajuste del modelo a partir de la reducción de -2LL del paso 0 al paso 1. En nuestro ejemplo, este coeficiente nos sugiere .713, un valor aceptable. Por lo tanto, como el coeficiente señala -al igual que el R cuadrado de Cox y Snell- la proporción o porcentaje de varianza que puede ser explicada por el modelo (a través de las dos variables predictoras
estudiadas) éstas puede explicar algo más del 71 por ciento de dicha varianza.

Juicios adicionales surgen de los resultados de la prueba de Hosmer y Lemeshow para el modelo, basado en la comparación entre los casos observados y los casos pronosticados, comparación que no debería arrojar diferencias de importancia (véase a continuación la Tabla 4.14).

<table>
<thead>
<tr>
<th>Paso</th>
<th>Chi-cuadrado</th>
<th>gl</th>
<th>Sig</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>14.348</td>
<td>8</td>
<td>.834</td>
</tr>
</tbody>
</table>

Este indicador de bondad de ajuste es más robusto que otros tradicionalmente utilizados en la regresión logística. Esta prueba que mide mediante la Chi Cuadrado, tiene la ventaja de dividir las observaciones en dos grupos de aproximadamente igual tamaño, lo que evita que se incorporen insuficientes datos sobre frecuencias observadas y esperadas o predichas. Estas son la base para el cálculo del estadístico. En el ejemplo, una significación de $p = .834$, derivada de la prueba Hosmer y Lemeshow, señalaría que no hay diferencias importantes entre la disposición a cambiar predicha y la observada, lo que supondría un buen ajuste del modelo.

| Tabla 4.15. Tabla de clasificación

<table>
<thead>
<tr>
<th>Observado</th>
<th>Pronosticado</th>
<th>Cambio</th>
<th>Porcentaje correcto</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>No cambio</td>
<td>Sí cambio</td>
</tr>
<tr>
<td>Paso 1</td>
<td>Cambio</td>
<td>26</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>No cambio</td>
<td>3</td>
<td>46</td>
</tr>
</tbody>
</table>

Porcentaje global: 90.0
El SPSS ofrece también una tabla (Tabla 4.15) que permite advertir la distribución de las frecuencias de la variable dependiente según lo observado y según lo pronosticado en el modelo. Los datos proporcionados permiten también analizar las tasas de falsos positivos y falsos negativos. En este caso el porcentaje global es de 90 por ciento con falsos positivos y negativos relativamente bajos (5 y 3, respectivamente). Debe hacerse notar que el porcentaje global de clasificación correcta aumentó significativamente con respecto al modelo nulo inicial que arrojó sólo 61.3 por ciento de clasificación correcta. Ese dato permite juzgar el ajuste en la clasificación del modelo; en nuestro caso deberíamos estar satisfechos.

Del análisis de la tabla de clasificación del modelo obtenemos también los siguientes elementos:

a) la especificidad (o proporción entre frecuencia de aciertos negativos y frecuencia total de negativos observados),
b) la sensibilidad (o razón entre la frecuencia de aciertos positivos y la frecuencia total de positivos observados),
c) la proporción de falsos negativos y falsos positivos.

En nuestro ejemplo sería:
Especificidad: 83.9
Sensibilidad: 93.9
Número de falsos negativos: 3
Número de falsos positivos: 5

Por lo tanto, de la tabla de clasificación podemos colegir que nuestro modelo tiene una especificidad aceptable (83.9%) y una alta sensibilidad (93.9%). Tomando en cuenta la constante y una única variable predictora, el modelo clasifica de forma aceptable a los individuos que decidieron por el cambio. No debe olvidarse que la variable dependiente es dicotómica y que el punto de corte es p = .50, por lo cual valores iguales o mayores de .50 llevan a pronosticar “cambio” codificado con 1; por otra parte, valores

8 Un falso positivo es cuando pronosticamos cambio y éste no se produce, mientras que un falso negativo sería cuando pronosticamos un no cambio y éste se produce
menores de .50 pronostican el "No cambio", y se codifica con 0. El gráfico de clasificación nos permite tener una perspectiva visual de lo que está ocurriendo.

Figura 4.5. El gráfico de clasificación de grupos observados y probabilidades predichas

Como puede advertirse en la Figura 4.5, el modelo clasifica la opción de "si cambio" de la variable dependiente (Y) con probabilidades de predicción mayores a .5. Esto confirma las bondades predictivas de la única variable predictora que queda en el modelo.
En la Tabla 4.16 de Variables en la Ecuación, se incorporan los siguientes indicadores: los coeficientes B, sus errores típicos (ET), el estadístico W de Wald, sus grados de libertad y su probabilidad asociada, las estimaciones de las odds ratio (Exp B) para las variables predictoras y la constante del modelo. En esta tabla podemos confirmar que solo la variable edad fue introducida por el programa en el paso 1, debido a que presenta el mayor puntaje en el estadístico, la variable sexo, fue desechada del modelo debido a que sus coeficientes no aportan a la predicción de la variable dependiente.

Con los productos de la Tabla 4.16 se puede proceder a la confección de la ecuación de regresión logística:

\[
\log P_{(\text{Cambio})} = 100 \times [\exp (B) - 1] = 100 \times (.803 - 1) = -19.7\%
\]

En este caso, al aumentar en una unidad la variable predictora “Edad”, el porcentaje de cambio (disminución por ser negativo) es del -19.7%. Según los datos obtenidos estamos en condiciones de estimar la probabilidad de cambiar, conociendo que se tiene una edad determinada (menor). En otras palabras, la reducción de la edad se asocia con un aumento en la probabilidad de decidir por el cambio. No obstante el aporte predictivo de la variable edad es baja (-19.7 %), lo que aconsejaría completar el modelo con otras variables predictivas hasta encontrar condiciones más apropiadas de predictibilidad.
Podemos iniciar el capítulo señalando que existen básicamente dos tipos de análisis factorial: el análisis factorial exploratorio (AFE) que intenta descubrir la naturaleza de los constructos que influyen sobre ciertas variables y el análisis factorial confirmatorio (AFC) que determina si un determinado conjunto de constructos influye ciertas variables sobre la base de la predicción (DeCoster, 1998). En el análisis exploratorio no se conocen a priori el número de factores y es en la aplicación empírica donde se determina este número. Por el contrario, en el análisis de tipo confirmatorio los factores están fijados a priori, utilizándose contrastes de hipótesis para su corroboración. En el presente capítulo nos limitaremos a describir solo el primero de ellos; más tarde en el libro, abordaremos también el análisis factorial confirmatorio.

El AFE es un término genérico que describe un conjunto de procedimientos estadísticos cuyo propósito central es la reducción de un grupo observable de variables a un menor número de factores latentes no observables. Permite encontrar grupos homogéneos de variables a partir de un conjunto numeroso de ellas. Dichos grupos homogéneos de variables se forman con aquellas que muestran fuertes relaciones entre sí, aunque manteniendo su independencia.
Pero, ¿qué entendemos por factor? En psicología, los factores suelen ser rasgos subyacentes, actitudes, creencias, valores u otras construcciones teóricas que se reflejan o se infieren a partir de una serie de variables objetivas. Se trata de eventos que no existen en la realidad pero que ayudan a describir y entender los fenómenos psicológicos. Así, el "pensamiento abstracto" no existe como tal, se lo infiere de las respuestas que una persona da ante ciertos ítems de un cuestionario.

Entonces, el AFE sirve muy bien allí donde se requiere analizar las relaciones entre un determinado número de unidades objetivas y no observables como por ejemplo, los ítems o preguntas de una escala que refieren hechos concretos, con ciertas entidades no observables (comúnmente llamados factores latentes) con las cuales mantienen relaciones relativamente estrechas.

F₁ y F₂ son dos factores comunes; Y₁, Y₂, Y₃, Y₄ y Y₅ son las variables observadas, por ejemplo las respuestas a un cuestionario; e₁, e₂, e₃, e₄ y e₅ representan los residuos. Las correlaciones entre las variables observadas se explican en términos de su relación con las variables latentes. La Figura 5.1 resume lo anterior (DSSC, 1997).

![Diagrama de Factores y Variables](image)

Figura 5.1. Relaciones que adoptan los factores latentes, las variables observables y el error de medición asociado

Si bien los antecedentes históricos del AFE se encuentran en los primeros trabajos de Galton sobre regresión lineal y en el desarrollo inicial que hizo Pearson sobre componentes principales, el advenimiento de esta técnica no fue posible sin el aporte de Spearman a la teoría de la inteligencia cuya discusión giraba entonces en torno al bien conocido "Factor G". Fue posteriormente Thurstone quien en los años cuarenta del
siglo pasado, difundió el análisis factorial entre los psicólogos cuando intentó diferenciar los principales factores que definían inteligencia humana.

A partir de entonces, el AFE se ha popularizado en la psicología como un valioso instrumento para obtener la validez factorial o de constructo de escalas y cuestionarios, permitiendo agrupar un determinado número de ítems en torno a factores que se configuran a causa de las relaciones identificadas entre aquellos. El propósito es vincular, finalmente, los diferentes factores con el constructo que se intenta medir. Otro campo fértil para el AFE ha sido el del marketing y la publicidad, poniendo al alcance de los especialistas, medios precisos para el estudio y la segmentación de los mercados (SPSS Training Department, 2000).

El AFE suele proceder con una de las siguientes técnicas de extracción de datos: el Análisis de Factores Comunes y el Análisis de Componentes Principales. Si bien es cierto que ambas técnicas son similares y son utilizadas con los mismos fines (la reducción de los datos), se suelen aplicar en circunstancias particulares, con supuestos diferentes. Veamos sus especificidades.

Análisis de Extracción por Factores Comunes (EFC)

En términos generales se asume que la varianza de cada variable puede ser descompuesta en una varianza común que es compartida por todas las variables consideradas en el modelo y una varianza que es particular a cada variable y que incluye también un componente de error. La EFC solo considera para el análisis, la variabilidad que es común a todas las variables.

En la EFC se extrae solo un número pequeño de factores para conocer las intercorrelaciones entre las variables observadas. Esto permite identificar los factores latentes que explican por qué las variables muestran relación entre sí.

Entonces, cuando las variables observadas son solo indicadores de los constructos latentes que deben medirse (como por ejemplo, los puntajes de una escala) o si el error representa una significativa porción del total de la varianza, entonces la técnica apropiada es la EFC.

Análisis de Extracción por Componentes Principales (ACP)

Esta técnica que fue esbozada por Pearson a principios del siglo pasado e introducida por Hotelling en 1932. Asume que
las variables observadas son medidas en ausencia de error (por ejemplo cuando se mide edad, años de educación, número de personas en la familia, etc.) o si se considera que el error y la varianza específica representa solo una pequeña porción del total de la varianza del conjunto de las variables. Si estos supuestos se cumplen, entonces lo apropiado sería utilizar el método de Análisis de los Componentes Principales (ACP). Dicho método se ejecuta a través de una combinación lineal de las variables observadas donde el primer componente principal resulta de la combinación que da cuenta de, o explica la mayor cantidad de la varianza en la muestra. El segundo componente principal responde a la siguiente cantidad de varianza inmediatamente inferior a la primera y no está correlacionado con el primero. Así sucesivamente los componentes explican proporciones menores de la varianza de la muestra total.

Con el fin de determinar el número de factores necesarios para representar los datos, resulta muy útil examinar el porcentaje total de la varianza que es explicada por cada uno de ellos. "La varianza total es la suma de las varianzas de cada variable. Esto se expresa de manera estandarizada con una media de cero y una desviación estándar de 1, por lo que el total de la varianza estará determinada por el total de las variables incluidas en el estudio" (Grajales, 2000, p. 2).

Cálculo del Análisis Factorial Exploratorio usando el SPSS

En el ACP, el propósito es lograr obtener un máximo de porción de varianza en el conjunto de las variables, con un mínimo de variables compuestas llamadas componentes principales (Division of Statistics and Scientific Computing at the University of Texas, DSSC, 1997). Veamos a continuación el desarrollo del AFE, paso a paso, utilizando la técnica del ACP, ya que el SPSS lo toma por defecto.

1. Llevar a cabo el Análisis Exploratorio de Datos. Mediante el AED deberemos establecer si los datos con que contamos cumplen los supuestos para soportar un AFE (centralidad, variabilidad, asimetría, comprobación de los supuestos paramétricos, etc., ver Capítulo 1). Así por ejemplo, si se observara una clara relación curvilinea entre las variables estudiadas, el coeficiente de correlación no sería una media apropiada y los resultados del AFE quedarían invalidados.
No obstante, tratándose de otras suposiciones, el Análisis Factorial suele ser relativamente flexible. Por ejemplo, es sabido que en las ciencias sociales y del comportamiento, los datos disponibles casi nunca cumplen los supuestos estadísticos relacionados con el tipo de medida requerida (intervalar o de razón) y a menos que las distribuciones de estos datos sean claramente no normales, el AFE podría ser aplicado manteniendo su robustez, incluso tratándose de datos medidos en una escala ordinal (Division of Statistics and Scientific Computing at the University of Texas, DSSC, 1997).

2. Considerar qué variables estudiar. El AFE ha sido concebido para explicar por qué ciertas variables se encuentran relacionadas entre sí. No obstante, su interés se centra en aquella porción de la varianza total compartida por las variables incluidas en el modelo. De ello se desprende que no deben ser elegidas las variables que no hayan demostrado estar correlacionadas unas con otras.

Por otra parte, como los factores deben ser inferidos de las variables objetivas, aquellos no podrán ser derivados a menos que exista un suficiente número de variables que los soporten; por ejemplo, no se puede definir un factor a partir de una sola variable, será necesario al menos tener tres para derivar de ellas un factor.

3. Llevar a cabo el análisis bivariado. Antes de iniciar el AFE, es preciso llevar a cabo una correlación bivariada entre todas las variables incorporadas en el estudio con el propósito de establecer el grado de relación entre ellas. El resultado de este análisis es la matriz de correlaciones que muestra la interdependencia lineal entre las variables. Debe señalarse que solo aquellas variables que demuestren tener una clara relación lineal entre ellas (es decir, que demuestren correlaciones significativas) deben ser tomadas en cuenta para el AFE.

4. Calcular la prueba de adecuación conocida como Kaiser-Meyer-Olkin (KMO). Antes de iniciar el cálculo del Análisis Factorial, debe consultarse con la llamada Prueba de Adecuación KMO que "autoriza" por decirlo así, su desarrollo. Los valores pequeños (próximos a cero) en el KMO no recomiendan el uso del AFE. En el SPSS, el cálculo de la KMO se acompaña también con la derivación del coeficiente de Esfericidad de Bartlett que se expresa a través de un valor.
de Chi cuadrado, la misma que debe ser lo suficientemente grande para arrojar un nivel de significación inferior a 0.05.

Por otro lado, el cuadrado del coeficiente de correlación múltiple (R^2) entre una variable y todas las demás, conocido como communalidad, es otro indicador de la fortaleza de la asociación lineal entre las variables. Cuando este coeficiente es pequeño para un variable en particular, debería recomendarse su eliminación del conjunto de variables consideradas en el estudio (Grajales, 2000).

5. **Considerar el tamaño de la muestra.** Como método estadístico multivariado, el AFE opera por lo general con una regla de oro en lo que se refiere a definir el tamaño de la muestra. La mayoría de los autores concuerdan en que debería haber al menos de 10 a 25 observaciones (sujetos) por cada variable empleadas en el análisis factorial. La razón de ello es que el AFE está basado en la correlación y por p variables, debería haber: $p \times (p-1)/2$ correlaciones posibles. El método de Componentes Principales es ciertamente más tolerante que el de Análisis de Factores Comunes, tratándose de muestras algo menores.

6. **Considerar el número de factores.** El AFE proporciona algunos recursos que ayudan a determinar el número de factores o componentes a ser extraídos. Probablemente el más importante sea el que tiene que ver con la determinación de los "autovalores" (*eigenvalues*). Un autovalor es una medida que representa la cantidad de varianza en las variables que el factor o componente es capaz de explicar. Existe una regla específica, de una manera general que podrían elegirse tantos factores como autovalores mayores a 1 existen (regla de Kaiser). La razón de ello es que si un autovalor representa la cantidad de varianza estandarizada de las variables explicadas por el factor o componente, entonces si es mayor a 1, debería representar la varianza contenida en más de una variable; esto es porque la cantidad máxima de varianza estandarizada contenida en una sola variable es igual a 1. Por lo tanto, si en el análisis de digamos, 5 variables, el primer autovalor es 3, entonces deberá estar explicando las variaciones de varias variables. No obstante, el investigador debe saber que la regla del autovalor igual a 1 es solo una sugerencia y no la última palabra (SPSS Training Department, 2000).

Si estamos trabajando con un número inferior a las 20 variables,
para la selección de factores o componentes, se puede utilizar también el criterio conocido como scree test criterio el cual consiste en utilizar una gráfica (la gráfica de sedimentación) donde aparecen los factores según su autovalor representados por una línea que va cayendo de derecha a izquierda. Se supone que en el punto en que la línea deja de caer y toma una tendencia horizontal al eje de las x se ubica un número de factores que podrían ser considerados para ser extraídos (ver Figura 5.2).

![Gráfico de sedimentación](image)

Figura 5.2. Gráfico de sedimentación que muestra la relación de los autovalores y el número de actores recomendados para el análisis

Finalmente, debe recomendarse que el criterio de **interpretabilidad** sea indispensable cuando se determina el número de factores. Con interpretabilidad queremos indicar que la elección final del número de factores depende de la concepción teórica que enmarca el estudio que se realiza y por lo tanto de la lógica que lo guía. En este sentido, no suele ser raro que algunos investigadores eliminen autovalores mayores a 1 y que elijan otros con valores menores a 1.

Un aspecto en el que deberá ponerse especial atención durante
el proceso de extracción es la conformación de la matriz de componentes. Dicha matriz permite visualizar la estructura factorial (o solución factorial) expresada en saturaciones que no son otra cosa que las correlaciones obtenidas, a través de un número determinado de iteraciones, entre las variables y cada uno de los factores. Aquí es importante señalar que, mientras más robusta sea la correlación, la solución factorial será más satisfactoria. Para leer adecuadamente estas matrices se identifica la primera variable en el primer factor y se mueve horizontalmente hacia la derecha buscando qué factor de la variable coincide con el coeficiente más alto. Una vez identificado éste se procede de la misma manera con la siguiente variable hasta terminar de vincularlas todas con los diferentes factores o componentes. Al final del proceso se espera tener debidamente identificadas las variables con mayor carga en cada factor. Volveremos sobre este tema a propósito del ejemplo que será descrito en la segunda parte de este capítulo.

7. Proceder con la Rotación Factorial. Es posible que al cabo del proceso inicial de extracción, la solución obtenida no sea del todo satisfactoria debido a que la interpretación permanece confusa. En tal caso, se debe proceder con la rotación de los factores y al hacerlo, transformar la matriz inicial en una que sea más fácil de interpretar. La interpretabilidad se favorece cuando se cumple con el principio de la Estructura Simple de Thurstone (1935), que establece que las cargas factoriales deben cumplir con los siguientes criterios:

- cada factor debe presentar unos pocos pesos altos y los otros próximos a cero;
- cada variable no debe estar saturada más que en un factor;
- no deben existir factores con la misma distribución, es decir, dos factores distintos deben presentar cargas altas y bajas.

De esta forma, y dado que hay más variables que factores comunes, cada factor tendrá una correlación alta con un grupo de variables y baja con el resto de variables. Examinando las características de las variables de un grupo asociado a un determinado factor se pueden encontrar rasgos comunes que
permitan identificar el factor y darle una denominación que respondan a esos rasgos comunes.

Toda solución factorial se da en un espacio bidimensional representado por el plano cartesiano y delimitado por sus par de ejes. La rotación factorial supone cambiar la posición de los ejes del plano para redimensionar la matriz factorial (y cambian las cargas factoriales y los factores). Al rotar la solución, las cargas que tenían valores intermedios en ambos factores pasan a tener valores altos en uno y bajos en otro. Puesto que las cargas factoriales representan la correlación entre las variables y los factores, este hecho nos permitirá “explicar” el significado de los factores. Existen dos formas básicas de realizar la rotación de factores: la Rotación Ortogonal y la Rotación Oblícu.

En la Rotación Ortogonal (sobre la que enfocaremos principalmente nuestra atención), los ejes se rotan de forma que quede preservada la falta de correlación entre los factores. La rotación es ortogonal cuando los ejes de coordenadas se rotan manteniendo un ángulo de 90 grados entre ellos y eso supone que los factores identificados no se relacionan entre sí. Dicho de otra forma, los nuevos ejes rotados, son perpendiculares igual que los ejes sin rotar. Lo que realmente se realiza es un giro de ejes, de manera que cambian las cargas factoriales y los factores. Se trata de buscar una matriz que tenga muchos valores nulos o casi nulos, y unos pocos valores cercanos a la unidad de acuerdo con el principio de estructura simple descrito anteriormente.

El método ortogonal más común es el Varimax. Se trata de un método de rotación que minimiza el número de variables con cargas altas en un factor, mejorando así la capacidad de interpretación de los factores. Este método considera que si se logra aumentar la varianza de las cargas factoriales al cuadrado de cada factor consiguiendo que algunas de sus cargas factoriales tiendan a acercarse a uno mientras que otras se acerquen a cero, lo que se obtiene es una pertenencia más clara e inteligible de cada variable a ese factor. Para evitar que las variables con mayores comunidades tengan más peso en la solución final, suele efectuarse la normalización de Kaiser. Este procedimiento consistente en dividir cada carga factorial entre el cuadrado por la comunidad de la variable correspondiente.
En el caso de la Rotación Oblicua, los ejes que se rotan conservan entre sí un ángulo diferente a 90 grados, en éste, los factores comunes se encuentran relacionados y por lo mismo ofrecen información más real.

Conviene advertir que tanto en la rotación ortogonal, como en la rotación oblicua, la comunalidad de cada variable no se modifica, es decir, la rotación no afecta a la bondad de ajuste de la solución factorial: aunque cambie la matriz factorial, las especificidades no cambian y por tanto, las comunalidades permanecen inalteradas. Sin embargo, cambia la varianza explicada por cada factor, manteniéndose inalterada la proporción total de la varianza explicada. (www.ciberconta.unizar.es/leccion/factorial/FACTORIALE.pdf).

La rotación por lo tanto, consiste en girar los ejes factoriales. La solución inicial extrae los factores según su importancia, de manera tal que el primer factor explica la mayor parte de la varianza (y por lo tanto estará en función de más variables) y los siguientes factores van explicando progresivamente menor porcentaje de varianza. Con la rotación se distribuye la varianza en otros factores para lograr un patrón más simple y más significativo. Existen muchos métodos de rotación y la selección de uno u otro dependerá de las soluciones, de tal manera que ésta se simplifique lo más posible.

![Diagrama de rotación ortogonal de los factores F1 y F2](image)

Fig 5.3. Rotación ortogonal de los factores F1 y F2

CAPÍTULO V

ANÁLISIS FACTORIAL EXPLORATORIO (AFE)
Los factores $F1'$ y $F2'$ se han obtenido a partir de los factores $F1$ y $F2$ aplicando la rotación ortogonal expresada en la Figura 5.3. En dicha figura se representan las variables originales en el espacio factorial definido por los ejes factoriales $F1$ y $F2$ y en el definido por los ejes $F1'$ y $F2'$. En particular, se muestra cuál es la relación existente entre las cargas factoriales de la variable en ambos espacios. Adviértase que la variable A tuvo inicialmente una carga (correlación) de 0.4 y 0.8 sobre los factores 1 y 2 respectivamente. Sin embargo, después de la rotación, el factor de carga cambió a 0.6 y 0.1 sobre el factor rotado $F1'$ y $F2'$ respectivamente, colocándose más próximo a una estructura simple y en consecuencia más fácil de interpretar.

Interpretación de la Estructura Factorial.

Factores sin rotar. Es importante que la proporción de varianza que explica el primer factor sin rotar sea bastante mayor que la que explican cada uno de los demás factores. Sin embargo el que todos los ítems tengan en este factor su mayor peso no es prueba de que haya un único factor o de que el instrumento sea realmente unidimensional. El segundo factor explica la mayor proporción de la varianza que va quedando y así sucesivamente; los factores siguientes (si los hubiera) explican progresivamente menos varianza aunque suelan estar muy iguales. Un dato de interés es que la varianza que explica el segundo factor no sea mucho mayor (siempre es mayor) que la que explica el tercero, si lo hay (Morales Vallejo, 2011).

Factores rotados. Utilizando la rotación ortogonal Varimax con el método Kaiser, que tiende a forzar la diferenciación y los contrastes y deja más clara la estructura factorial subyacente, la interpretación debería centrarse en los siguientes aspectos: Primero, se tiene que analizar la varianza explicada por los diferentes factores. La varianza total explicada por los factores rotados es la misma que la que quedó expresada en el caso de los factores no rotados. La diferencia estriba en que ahora la varianza se encuentra repartida de manera diferente, y esto nos permite valorar qué factores son más importantes.

Se supone que entre todos los factores incorporados en el análisis, sería posible explicar el 100 por ciento de la varianza. Sin embargo, es sabido que muchos de estos factores contribuyen muy poco a la explicación y por lo tanto se hacen irrelevantes. Se
asume (Morales Vallejo, 2011) que solo entre el 50 y 60 por ciento de las varianzas explicables pueden realmente ser explicadas. Henson y Roberts (2006) llevaron a cabo una investigación bibliográfica para verificar cuál era, en términos promedio, el porcentaje de varianza explicada, reportada por la mayoría de los estudios publicados. Los resultados llevaron a concluir que por lo general, los resultados publicados no explicaban más allá del 52 por ciento de la varianza. Este hallazgo hace que quienes esperen explicar porcentajes mayores posean expectativas poco realistas.

En segundo lugar, en la interpretación, se debe considerar la selección de las variables que definen cada factor. La tabla de los factores rotados, permite identificar aquellas variables que tienen algo en común con respecto a cada factor; es posible reconocerlos porque el programa los alinea en la columna, por debajo de los factores. Es importante señalar que las variables que quedan definidas en un factor, son las que expresan correlaciones entre sí, mayores a .3, valor mínimo que define su consistencia. Debe notarse que en la columna se añaden también otras variables con valores por debajo al .3; sin embargo, tales variables deben ser desestimadas.

En este punto de la interpretación es imprescindible el análisis conceptual que el investigador debe hacer para encontrar coherencia lógica entre la variable y el factor, a la luz del marco teórico referencial que se esté empleando. Si una variable elegida por el programa no es congruente con la lógica del modelo, sebe ser sustituida incluso a pesar de poseer una carga importante. Finalmente, consultando el modelo empleado y la naturaleza de las variables que quedaron agrupadas bajo un factor, deberá encontrarse un nombre para este último que dé sentido a la agrupación. Esta operación debe hacerse con todos y cada uno de los factores estudiados.

En tercer lugar, se recomienda (Morales Vallejo, 2011) que se calcule el Índice de Ajuste del Factor de la Escala (Index of Fit of Factor Scales) calculado por Fleming (1985). Se trata de un cálculo sencillo aplicable únicamente a la rotación ortogonal, que ofrece un indicador de hasta qué punto los ítems seleccionados explican ese factor o subconcepto mejor que todos los demás ítems de la escala. El indicador se aplica según Morales Vallejo (2011) con la siguiente fórmula:
$$IFS = 1 - \frac{h_{re}^2}{h_i^2}$$

donde h_{re}^2 corresponde a la media de los pesos elevados al cuadrado de las variables no seleccionadas para definir al factor y donde h_i^2 supone la media de los pesos elevados al cuadrado de todas las variables de la columna. Tomando el ejemplo de Morales Vallejo (2011), supongamos que en uno de los factores rotados, las variables no seleccionadas fueran:

$$h_{re}^2 = \frac{.292^2 + .077^2 + .231^2}{3} = \frac{.1445}{3} = .0482$$

Y que el resto (el total) de las variables fueran:

$$h_i^2 = \frac{.292^2 + .077^2 + .231^2 + .868^2 + .802^2 + .620^2}{6} = \frac{1.9256}{6} = .321$$

Aplicando la fórmula anterior tendremos

$$IFS = 1 - \frac{.0482}{.321} = .850;$$

El mismo procedimiento debe llevarse a cabo con todos los factores. Para interpretar este indicador, el valor mínimo debe ser mayor de .50. Un valor de .50 indica que los ítems no seleccionados explican el factor tan bien como los seleccionados; un valor de .60 es aceptable y uno de .80 puede considerarse como óptimo. Este índice es especialmente útil si deseamos descomponer una escala en subescalas que midan aspectos distintos y que incluso se van a usar e interpretar de manera independiente, calculando a cada sujeto varios totales a partir de un mismo instrumento.

Cálculo del Análisis Factorial Exploratorio usando SPSS

Como en los casos anteriores, identificaremos un ejemplo
concreto para que sirva de base a la descripción, paso a paso, de la aplicación del SPSS para la realización del AFE. Tomemos como base un estudio realizado por el autor con una muestra de 101 estudiantes universitarios con el propósito de indagar estilos de relacionamiento familiar sobre la base de situaciones conflictivas. Se aplicaron varias escalas tipo Likert de entre las cuales utilizaremos una de ellas (conformada por 8 ítems), con propósitos de exposición de los procedimientos de validación factorial a seguir con la asistencia del SPSS.

Establecer la relación entre las variables. Uno de los requisitos que debe cumplirse para que el Análisis Factorial tenga sentido es que las variables estén altamente intercorrelacionadas. Por lo tanto, en primer lugar, como lo señalamos páginas atrás, será preciso confirmar la existencia y magnitud de las relaciones de las variables medidas por la escala. Para ello deberá llevarse a cabo una correlación bivariada entre todas ellas. Recuérdese entonces, que el AFE procede solo si se confirma un importante grado de relación entre dichas variables. Por lo tanto, para confirmar este supuesto con el SPSS, del editor de datos del programa, elijase “Correlaciones” (Correlate) y luego “Bivariada” (Bivariate), tal como se muestra en la Figura 5.4:

![Figura 5.4. Ingreso desde el editor de datos del SPSS para acceder a la correlación bivariada y confirmar la relación entre las variables sometidas a análisis](image)

CAPÍTULO V

ANÁLISIS FACTORIAL EXPLORATORIO (AFE)
Esta elección abrirá un cuadro de diálogo como el que se aprecia en la Figura 5.5. En dicho cuadro, elijase del cajón de la izquierda, las variables medidas por la escala, y con la ayuda de la flecha, transfíéralas al cajón de “variables”. Nótese que cada una de las variables elegidas está acompañada por un ícono en forma de un gráfico de barras que señala que las variables fueron medidas en una escala ordinal. Por lo tanto, para obtener el Coeficiente de correlación adecuado, en la sección encabezada con “coeficientes de Correlación”, elijase “Spearman” en lugar de “Pearson” y en el recuadro encabezado con “Prueba de significancia”, manténgase la opción “dos colas” por defecto.

Figura 5.5. Cuadro de diálogo que permite la inclusión de las variables con las que se procederá la correlación bivariada

Posteriormente presione “Ok” y obténgase la matriz de correlaciones, la misma que, una vez editada, presenta la siguiente apariencia:

CAPÍTULO V

ANÁLISIS FACTORIAL EXPLORATORIO (AFE)
Tabla 5.1.
Matriz de correlaciones bivariadas, señalando la fuerza de la relación entre las variables estudiadas

<table>
<thead>
<tr>
<th></th>
<th>G1A</th>
<th>G1B</th>
<th>G1C</th>
<th>G1D</th>
<th>G2A</th>
<th>G2B</th>
<th>G2C</th>
<th>G2D</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1A</td>
<td>1</td>
<td>.609(**)</td>
<td>1</td>
<td>.637(**)</td>
<td>.710(**)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G1B</td>
<td>.609(**)</td>
<td>1</td>
<td>.530(**)</td>
<td>.647(**)</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G1C</td>
<td>.637(**)</td>
<td>.710(**)</td>
<td>1</td>
<td>.156</td>
<td>.125</td>
<td>.186</td>
<td>.178</td>
<td>1</td>
</tr>
<tr>
<td>G1D</td>
<td>.408(**)</td>
<td>.530(**)</td>
<td>.647(**)</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G2A</td>
<td>.306(*)</td>
<td>.257(**)</td>
<td>.212(*)</td>
<td>.268(**)</td>
<td>.433(*)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G2B</td>
<td>.306(*)</td>
<td>.257(**)</td>
<td>.212(*)</td>
<td>.268(**)</td>
<td>.433(*)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G2C</td>
<td>.301(*)</td>
<td>.329(*)</td>
<td>.406(**)</td>
<td>.309(*)</td>
<td>.607(**)</td>
<td>.587(**)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>G2D</td>
<td>.147</td>
<td>.221(*)</td>
<td>.333(**)</td>
<td>.268(**)</td>
<td>.600(**)</td>
<td>.606(**)</td>
<td>.809(**)</td>
<td>1</td>
</tr>
</tbody>
</table>

Nótese en la matriz que, con excepción de la variable G2A, todas las demás mantienen una relación claramente significativa entre ellas. Este resultado preliminar podría llevarnos a tomar la decisión de eliminar el ítem correspondiente de la escala ya que aparentemente no mide lo mismo que las otras variables de la escala. No obstante, es también posible que en el conjunto del proceso de reducción, esta variable no ejerza influencia alguna. Por ello, decidimos mantener la escala inalterada.

Exploración de los Datos. Una vez confirmada la relación entre las variables de la escala, deberíamos llevar a cabo el análisis exploratorio de la muestra obtenida (ver Capítulo I). Los resultados de esta exploración nos dirán si sus características cumplen con los supuestos estadísticos básicos y si, por lo mismo, el AFE es procedente. Para ello escogimos una variable que podía reflejar las peculiaridades de la distribución\(^1\) (¿Cuánto te gusta el colegio este año?).

Con una N = 101 casos válidos, no se observaron valores faltantes; la Tabla 5.2 siguiente resume los principales descriptivos. Nótese que, la mediana no coincide con la media recortada, aquella tiene un valor superior, lo que indica una distribución no muy

1 Adviértase que debido a que los ítems de la escala fueron diseñados para detectar relaciones disfuncionales, se espera por lo tanto que éstas no se distribuyan normalmente.
homogénea. No obstante, los valores de asimetría y curtosis se encuentran dentro de los límites esperados.

Tabla 5.2.

Estadísticos descriptivos de la variable elegida que orientan acerca de la normalidad de su distribución

<table>
<thead>
<tr>
<th>Descriptivos</th>
<th>Statistic</th>
<th>Std. Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>¿Cuánto te gusta el colegio este año?</td>
<td>Mean</td>
<td>4.29</td>
</tr>
<tr>
<td></td>
<td>95% Confidence Interval for Mean</td>
<td>Lower Bound</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Upper Bound</td>
</tr>
<tr>
<td></td>
<td>5% Trimmed Mean</td>
<td>4.32</td>
</tr>
<tr>
<td></td>
<td>Median</td>
<td>5.00</td>
</tr>
<tr>
<td></td>
<td>Variance</td>
<td>3.107</td>
</tr>
<tr>
<td></td>
<td>Std. Deviation</td>
<td>1.763</td>
</tr>
<tr>
<td></td>
<td>Minimum</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Maximum</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Range</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Interquartile Range</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Skewness</td>
<td>-.382</td>
</tr>
<tr>
<td></td>
<td>Kurtosis</td>
<td>-.645</td>
</tr>
</tbody>
</table>

Por otro lado, los Estimadores M (Huber, Tukey, Hampel y Andrews) no muestran discrepancias importantes con respecto a la media recortada, indicando con ello que poseemos una muestra relativamente simétrica. A pesar de ello, la prueba de normalidad de Kolmogorov-Smirnov con la significación Lilliefors (aplicable a muestras grandes) recomienda rechazar la hipótesis nula de la normalidad.

CAPÍTULO V

ANÁLISIS FACTORIAL EXPLORATORIO (AFE)
Figura 5.6. Histograma, Diagrama Cuantil – Cuantil, Diagrama de tallo y hojas y Diagrama de Cajas y Bigotes para respaldar una distribución relativamente normal

Pese a la recomendación de rechazar la hipótesis nula de la normalidad, el análisis gráfico resumido en el conjunto de la Figura 5.6, muestra por su parte, un histograma y un diagrama de tallo y hojas ligeramente asimétrico y un diagrama Cuantil – Cuantil, relativamente normal. El diagrama de Cajas y Bigotes, por su parte, confirma una distribución sin valores atípicos.

Iniciando el AFE. Una vez demostrada la correlación entre las variables medidas por la escala y aceptada la normalidad de la distribución de nuestra muestra, estamos listos para iniciar el AFE. Para ello, del editor de datos del programa elijase “Analizar” (Analyze), luego “Reducción de datos” o “Reducción de dimensiones” (SPSS v.17) y finalmente “Factor”, tal como se muestra en la Figura 5.7.

En él, seleccione las variables de la escala cuya validez factorial se quiere analizar y con la ayuda de la flecha superior, muevalas al recuadro de la derecha. Inmediatamente después elijase en la columna de la derecha del cuadro, la opción “Descriptivas”. En el cuadro de diálogo correspondiente, en el recuadro encabezado con “Estadísticos”, elijase “Solución inicial” y más abajo en el recuadro de “Matriz de correlaciones” márquese “KMO y Prueba de Esfericidad de Bartlett”, tal como se muestra en la Figura 5.9. Luego escolja “Continuar”.
Figura 5.7. Acceso al cálculo del Análisis Factorial Exploratorio desde el editor de datos del SPSS

Esta elección permitirá la apertura del cuadro de diálogo (Figura 5.8).

Figura 5.8. Cuadro de diálogo para elegir las variables que serán sometidas a análisis factorial

CAPÍTULO V
ANÁLISIS FACTORIAL EXPLORATORIO (AFE)
Figura 5.9. Cuadro de diálogo que da paso a las pruebas iniciales para determinar la procedencia del AFE

"Continuar" despliega nuevamente el cuadro de diálogo correspondiente al análisis factorial (Figura 5.8). Una vez en éste, elija ahora la opción "Extracción", entre los botones de la derecha. Esta opción desplegará la siguiente ventana (Figura 5.10).

Este cuadro de diálogo ofrece diferentes opciones para el método de extracción. Mantenga "Componentes Principales" por defecto. Luego, solicite, en el recuadro de "Análisis", la "Matriz de correlaciones" y en el recuadro de la derecha encabezado por "Desplegar", debe elegirse "Solución factorial no rotada" y el "Grááfico de sedimentación" (Scree Plot). Posteriormente, en el recuadro inferior de "Extracción" elija "Basado en Autovalor" (Base on Eigenvaule) con autovalores mayores a 1^2. En la parte inferior de esta ventana, el programa comunica que intentará llevar a cabo el proceso de la extracción en 25 iteraciones.

Debe recordarse que el investigador puede definir el número de factores empleando el criterio basado en la regla de Kaiser, es decir, que podrían elegir tantos factores como autovalores mayores a 1 existen; sin embargo, si el caso lo amerita, podría también forzar un número determinado de factores utilizando la opción "Fijar número de factores", indicando el número de ellos que el programa debe considerar.
Finalmente, para proseguir pinche en “Continuar” para retornar al cuadro de diálogo del “Análisis factorial”.

Figura 5.10. Cuadro de diálogo que permite definir el método de extracción y el número de factores a ser extraídos.

Figura 5.11. Cuadro de diálogo que permite la elección del método de rotación adecuado.
Una vez en éste, selecciónese la opción “Rotación” y en la ventana resultante escoja, en el recuadro de “Método”, la opción “Varimax” y en “Desplegar”, encargue la “Solución rotada” (véase Figura 5.11). En este caso, el programa intentará completar la rotación en 25 iteraciones. Finalmente, para seguir adelante, volviendo sobre el cuadro de diálogo del Análisis factorial, presione sobre “Continuar”.

En esta ventana, pulse sobre el botón de “Opciones”. Al hacerlo, se accederá al cuadro de diálogo donde deberá decidirse por la forma de neutralizar los datos faltantes y el formato de los coeficientes calculados (ver Figura 5.12). Por lo tanto, elijase para el primer caso “Excluir casos mediante lista” (Exclude cases listwise). Para el segundo caso, pida que los coeficientes sean ordenados según su tamaño (Sorted by Size) y que se supriman los coeficientes más pequeños que .3. Luego, presione “Continuar”. El hacerlo lo reenviará nuevamente al cuadro de diálogo de Análisis de varianza. Una vez allí, simplemente elija “Continuar” de entre los botones inferiores. El hacerlo lo remitirá alvisor de resultados del SPSS, desplegando todos los productos solicitados.

![Figura 5.12. Cuadro de diálogo que ofrece opciones para el control de casos faltantes y para desplegar el formato de los coeficientes](image)
Matriz de Puntuaciones Factoriales

Una vez determinados los factores rotados, como último paso del AFE, se calcula la matriz de puntuaciones factoriales. Esto es posible solicitando al programa que cree nuevas variables conteniendo los puntajes de cada sujeto. Para ello, desde el cuadro de diálogo correspondiente a Análisis factorial, escoja el botón “Puntajes” (Scores). Esto lo llevará a la ventana de la Figura 5.13.

![Figura 5.13. Cuadro de diálogo que ofrece el cálculo de los puntajes factoriales](image)

En ella, pinche “Guardar como variables” y se iluminará las opciones de “Método”. Consérve “Regresión” disponible por defecto y presione “continuar”. El producto se muestra como en la Figura 5.14.

La utilidad de analizar las puntuaciones factoriales de los sujetos son muy variadas según lo que se pretenda. Algunas de sus funciones podrían ser las siguientes:

a) Identificar los casos atípicos o los que son más raros o extremos;

b) conocer dónde se ubican ciertos grupos o subgrupos de la muestra (los más jóvenes frente a los mayores; los de clase alta frente a los de baja; los católicos frente a los no católicos; los de una provincia frente a los de otras, etc.).
c) conocer en qué factor sobresalen unos sujetos y en qué factor no.

d) explicar, analizando la información anterior, la razón del surgimiento de dichos factores en el análisis realizado.

Además, el Análisis Factorial es, en ciertas circunstancias, un paso previo a otros análisis, como por ejemplo, Regresión Múltiple o Análisis de Cluster, en los que se sustituye el conjunto de variables originales por los factores obtenidos. Por ello, es necesario conocer los valores que toman los factores en cada observación.

![Tabla de resultados del análisis factorial](image)

Figura 5.14. Ventana que despliega las puntuaciones factoriales de cada sujeto

Interpretación de Resultados en el AFE

En esta sección, sobre la base del ejemplo anterior, explicaremos el significado que cada una de las tablas producidas por el programa. El primer paso es interpretar el producto de la solución inicial ofrecido a través de las pruebas KMO y de Esfericidad de Bartlett.

KMO compara las magnitudes de los coeficientes de correlación observados con las magnitudes de los coeficientes de correlación parcial de forma que, cuanto más pequeño sea su valor, mayor es el valor de los coeficientes de correlación parciales y, por lo
tanto, menos deseable es realizar un Análisis Factorial. Kaiser, Meyer y Olkin aconsejan que si KMO ≥ .75 la idea de realizar un análisis factorial es buena, si KMO ≥ .5 pero menor a .75 la idea es aceptable y si KMO < .5 es inaceptable.

Tabla 5.3.
Prueba de adecuación de KMO y de esfericidad de Bartlett

Kaiser-Meyer-Olkin Measure of Sampling Adequacy	.811	
Bartlett’s Test of Sphericity	Approx. Chi-Square	583.368
F	66	
Sig.	.000	

KMO ofrece un coeficiente de .811 que puede considerarse un buen indicador descriptivo (mientras dicho valor se aproxime más a 1.00 resulta ser más significativo). Por su parte, la prueba de Bartlett calculada a través de la Chi Cuadrado ($x^2 = 583.368$), resultó ser claramente significativa, señalando también la intercorrelación de las variables y por lo tanto la procedencia del Análisis Factorial y recomendando su aplicación. Demás está señalar que si las pruebas confrontadas no fueran significativas, sería necesario declarar el cálculo.

Tabla 5.4.
Presentación de las “Comunalidades” que representan la proporción de varianza en una variable, explicada por factor o componente

<table>
<thead>
<tr>
<th>Comunalities</th>
<th>Initial</th>
<th>Extraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amenazarse uno a otro</td>
<td>1.000</td>
<td>.653</td>
</tr>
<tr>
<td>Gritarse uno a otro</td>
<td>1.000</td>
<td>.733</td>
</tr>
<tr>
<td>Insultarse uno a otro</td>
<td>1.000</td>
<td>.822</td>
</tr>
<tr>
<td>Llamar por sobrenombres crueles</td>
<td>1.000</td>
<td>.611</td>
</tr>
<tr>
<td>Tratan de ponerte de su lado</td>
<td>1.000</td>
<td>.609</td>
</tr>
<tr>
<td>Envián mensajes a través tuyo</td>
<td>1.000</td>
<td>.658</td>
</tr>
<tr>
<td>Te ves atrapado en sus peleas</td>
<td>1.000</td>
<td>.798</td>
</tr>
<tr>
<td>Te sientes disputado por ellos</td>
<td>1.000</td>
<td>.785</td>
</tr>
<tr>
<td>Desacuerdo con cómo te vistes</td>
<td>1.000</td>
<td>.629</td>
</tr>
<tr>
<td>Desacuerdo con tener que ayudar en casa</td>
<td>1.000</td>
<td>.499</td>
</tr>
<tr>
<td>Desacuerdo con colegio</td>
<td>1.000</td>
<td>.697</td>
</tr>
<tr>
<td>Desacuerdo con relaciones con otros familiares</td>
<td>1.000</td>
<td>.581</td>
</tr>
</tbody>
</table>

Extraction Method: Principal Component Analysis.

CAPÍTULO V
ANÁLISIS FACTORIAL EXPLORATORIO (AFE)
Tabla 5.5.
Varianza total explicada en porcentaje, por los componentes definidos en la investigación

<table>
<thead>
<tr>
<th>Componente</th>
<th>Total % de Varianza</th>
<th>Cumulativo %</th>
<th>Total % de Varianza</th>
<th>Cumulativo %</th>
<th>Total % de Varianza</th>
<th>Cumulativo %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial Eigenvalues</td>
<td>Extraction Sums of Squared Loadings</td>
<td>Relation Sums of Squared Loadings</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2.208</td>
<td>18.483</td>
<td>2.208</td>
<td>18.483</td>
<td>20.793</td>
<td>47.368</td>
</tr>
<tr>
<td>5</td>
<td>.645</td>
<td>5.048</td>
<td>.645</td>
<td>5.048</td>
<td>5.048</td>
<td>11.503</td>
</tr>
<tr>
<td>9</td>
<td>.359</td>
<td>2.954</td>
<td>.359</td>
<td>2.954</td>
<td>2.954</td>
<td>5.208</td>
</tr>
<tr>
<td>10</td>
<td>.259</td>
<td>2.159</td>
<td>.259</td>
<td>2.159</td>
<td>2.159</td>
<td>3.358</td>
</tr>
<tr>
<td>11</td>
<td>.192</td>
<td>1.604</td>
<td>.192</td>
<td>1.604</td>
<td>1.604</td>
<td>4.962</td>
</tr>
<tr>
<td>12</td>
<td>.156</td>
<td>1.301</td>
<td>.156</td>
<td>1.301</td>
<td>.156</td>
<td>.207</td>
</tr>
</tbody>
</table>

Extraction Method: Principal Component Analysis.
En segundo lugar, debe explorarse la tabla de las “Comunalidades; éstas representan la proporción de varianza en una variable, explicada por factor o componente (ver Tabla 5.4). Por lo tanto en ella deben considerarse los valores de extracción. Adviértase que en nuestro ejemplo, con excepción de uno de ellos (el correspondiente a la variable “Desacuerdo con tener que ayudar en casa”), los coeficientes se encuentran por encima de .58, lo que puede considerarse una varianza adecuada. Las variables con comunalidades muy bajas (menores a .3) tienen muy poco en común con las otras variables y por lo tanto no explican el factor (o componente) y menos aún pueden contribuir a su definición.

![Screem Plot](image)

Figura 5.15. Gráfica de sedimentación que confirma la información ofrecida por la tabla de la varianza total explicada

En tercer lugar, explóresela tabla de la “Varianza Total Explicada”. En ella deben advertirse al menos dos aspectos: uno, que el programa recomendó la consideración de tres componentes (o factores, siguiendo la regla de Kaiser), y otro que entre los tres componentes se explica el 67.359 por ciento de la varianza total (la varianza contribuida por las doce variables), una cantidad de varianza considerada relevante para una exploración del tipo que se lleva a cabo en el presente ejemplo.
La cantidad de factores seleccionados fue confirmada por el Gráfico de Sedimentación que destaca claramente tres autovalores superiores a uno, perfectamente diferenciados del resto que presentan variaciones sin importancia (véase Figura 5.15).

Nótese que entre el tercer y cuarto autovalor, existe mucho menos diferencia que entre el tercer y el segundo o el primero. Como se recordará, estas diferencias permiten tomar una decisión acerca del número de factores que podrían ser considerados en el análisis.

<table>
<thead>
<tr>
<th>Component Matrix°</th>
<th>Component</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Te ves atropado en sus palos</td>
<td>.827</td>
</tr>
<tr>
<td>Te sientes disputado por ellos</td>
<td>.789</td>
</tr>
<tr>
<td>Envián mensajes a través tuyo</td>
<td>.675</td>
</tr>
<tr>
<td>Desacuerdo con cómo te vistes</td>
<td>.670</td>
</tr>
<tr>
<td>Tratan de ponerte de tu lado</td>
<td>.655</td>
</tr>
<tr>
<td>Desacuerdo con relaciones con otros familiares</td>
<td>.578</td>
</tr>
<tr>
<td>Desacuerdo con tener que ayudar en casa</td>
<td>.568</td>
</tr>
<tr>
<td>Llomarse por sobrenombres crueles</td>
<td>.560</td>
</tr>
<tr>
<td>Insultarse uno a otro</td>
<td>.603</td>
</tr>
<tr>
<td>Gritarse uno a otro</td>
<td>.543</td>
</tr>
<tr>
<td>Amenazarse uno a otro</td>
<td>.483</td>
</tr>
<tr>
<td>Desacuerdo con colegio</td>
<td>.503</td>
</tr>
</tbody>
</table>

Extraction Method: Principal Component Analysis.
° 3 components extracted.

En cuarto lugar, la tabla de “Componentes no Rotados” muestra los resultados de la extracción bajo condiciones naturales. La Tabla 5.6 dispone las cargas factoriales agrupándolas bajo los tres factores o componentes extraídos; no obstante, al cabo de esta operación, no se observa una interpretación clara de los
factores dada la gran cantidad de cargas obtenidas con valores intermedios y debido a que el primer factor o componente está relacionado con la mayoría de las variables. Para obtener una solución más inteligible será necesario recurrir a la rotación de factores.

La falta de identificabilidad debe resolverse buscando el principio de estructura simple preconizado por Thurstone (1935) según el cual la matriz de cargas factoriales debe reunir las siguientes características:

a) cada factor o componente debe tener unos pocos pesos altos y los otros próximos a cero;

b) cada variable no debe estar saturada más que en un factor o componentes;

c) no deben existir factores o componentes con la misma distribución, es decir, dos factores distintos deben presentar distribuciones diferentes de cargas altas y bajas.

De esta forma, y dado que hay más variables que componentes, cada uno de ellos tendrá una correlación alta con un grupo de variables y baja con el resto de variables. Examinando las características de las variables de un grupo asociado a un determinado factor o componente, se pueden encontrar rasgos comunes que permitan identificar el componente y darle una denominación que responda a esos rasgos comunes.

En quinto lugar, por lo tanto, debe considerarse la matriz de componentes rotados (mediante el método Varimax) que mejora la identificabilidad minimizando el número de variables con cargas altas en un solo factor. Esto se logra al aumentarse la varianza de las cargas factoriales al cuadrado de cada factor, consiguiendo que algunas de sus cargas factoriales tiendan a aproximarse a uno mientras que otras se acerquen a cero.

Como producto de esta operación, en el ejemplo desarrollado, se obtuvo la matriz que se presenta en la Tabla 5.7 Nótese en ella, que las variables y sus cargas factoriales se agrupan ordenadamente bajo los tres componentes extraídos siguiendo la lógica de la simplicidad estructural. Adviértase también que sólo una variable (Desacuerdo con tener que ayudar en casa), carga simultáneamente en dos componentes, no obstante, dado a que
existe una diferencia clara entre ambas (.385 bajo el componente 2 y .592 bajo el componente 3), no cabe duda alguna dónde situar a la mencionada variable. En consecuencia tenemos 3 componentes con 4 variables cada uno.

Tabla 5.7.
Matriz de extracción de los componentes rotados con tres componentes extraídos a través de Varimax

<table>
<thead>
<tr>
<th>Rotated Component Matrix*</th>
<th>Componentes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1) Relación violenta</td>
</tr>
<tr>
<td>Insultarse uno a otro</td>
<td>.895</td>
</tr>
<tr>
<td>Gritarse uno a otro</td>
<td>.847</td>
</tr>
<tr>
<td>Amenazarse uno a otro</td>
<td>.784</td>
</tr>
<tr>
<td>Llamarse por sobrenombres crueles</td>
<td>.743</td>
</tr>
<tr>
<td>Te sientes disputado por ellos</td>
<td>.820</td>
</tr>
<tr>
<td>Te ves atrapado en sus peleas</td>
<td>.806</td>
</tr>
<tr>
<td>Envían mensajes a través tuyo</td>
<td>.784</td>
</tr>
<tr>
<td>Tratan de ponerte de su lado</td>
<td>.730</td>
</tr>
<tr>
<td>Desacuerdo con colegio</td>
<td></td>
</tr>
<tr>
<td>Desacuerdo con cómo te vistes</td>
<td></td>
</tr>
<tr>
<td>Desacuerdo con relaciones con otros familiares</td>
<td></td>
</tr>
<tr>
<td>Desacuerdo con tener que ayudar en casa</td>
<td></td>
</tr>
</tbody>
</table>

El orden en la solución alcanzada, facilita la denominación de los factores o componentes extraídos, armonizándolos con el sentido de las variables existentes. De esta manera tenemos el factor o componente “Relación Violenta” medido a través de las variables: “Insultarse uno a otro”, “Gritarse uno a otro”, “Amenazarse uno a otro” y “Llamarse por sobrenombres crueles”. El factor o componente “Relación Instrumental” medido por las variables: “Te sientes disputado por ellos”, “Te ves atrapado en sus peleas”, “Envían mensajes a través tuyo”, y “Tratan de ponerte de su lado”. Por último, el factor o componente “Relación Crítica”

CAPÍTULO V

ANÁLISIS FACTORIAL EXPLORATORIO (AFE)
reunió las variables: “Desacuerdo con colegio”, “Desacuerdo con cómo te vistes”, “Desacuerdo con relaciones con otros familiares” y “Desacuerdo con tener que ayudar en casa”.

Ahora estamos listos para discutir los resultados factoriales a la luz de la teoría y de esta manera validar el modelo desarrollado; sin embargo, para este propósito, debe acudirse al Análisis Factorial Confirmatorio (AFC), tema que será abordado durante el capítulo VII.
CAPÍTULO VI

INTRODUCCIÓN AL MODELADO DE ECUACIONES ESTRUCTURALES (MEE)

Por Modelado de Ecuaciones Estructurales (MEE) debemos entender la serie de procedimientos encaminados a establecer relaciones entre variables llamadas observables y variables no observables o latentes, con el fin de ofrecer una prueba cuantitativa acerca de un modelo teórico determinado. Las variables observadas constituyen medidas o indicadores que permiten inferir un constructo (o variable latente). Variables latentes, por lo tanto, son aquellas que sólo pueden ser observadas o medidas de manera indirecta o que son inferidas a partir de las variables observadas. La autoeficacia, por ejemplo es un constructo inferido a partir de una serie de respuestas ofrecidas por una persona acerca de sus creencias sobre sus propias capacidades.

Es importante señalar que en el MEE se introducen alguna terminología novedosa para describir algunos conceptos ya conocidos. Por ejemplo, se distingue entre constructos o variables latentes que son exógenas y endógenas. Las primeras, se usan como sinónimas de las variables independientes y se dice de ellas que "causan" directa o indirectamente, alteraciones en los valores de otras variables latentes del modelo, las que se llaman endógenas. Se dice que las fluctuaciones de los valores de las variables endógenas son explicadas por el modelo porque todas
las variables latentes que las influencian se encuentran incluidas en las especificaciones de dicho modelo (Byrne, 2010).

El MEE consiste en una estrategia estadística que emplea correlaciones, covarianzas e incluso diferencias de medias, diseñada para analizar relaciones estructurales que pone a prueba diferentes modelos como el de la Regresión Múltiple, el Análisis Factorial Confirmatorio y el Análisis de Ruta (Path Analysis) facilitando la estimación de dependencias múltiples e interrelacionadas entre las variables latentes endógenas (dependientes) y exógenas (independientes o predictivas). El MEE permite poner a prueba varios modelos que relacionan hipotéticamente dichas variables con los constructos y éstos entre sí. Por lo tanto, el MEE tiene como propósito central establecer en qué medida los datos existentes soportan un modelo teórico propuesto. Si el modelo indica que los datos no respaldan la teoría, ésta deberá ser revisada o ajustada para una nueva comprobación.

Por lo tanto, el propósito fundamental del MEE es ante todo probar el ajuste del modelo con los datos disponibles; es decir, se modela la teoría con los datos recolectados y se ve con cuanta precisión aquélla es predicha por éstos. En otras palabras, el investigador propone un modelo teórico particular, recupera datos y los somete a prueba para ver si encajan en el modelo propuesto. Hay por lo menos tres procedimientos para llevar a cabo este proceso de confirmación de ajuste: en el primero, la confirmación o no confirmación del ajuste es llevado a cabo a través de un procedimiento estadístico (la aplicación de la prueba X²) de prueba de significancia. En un segundo procedimiento, el investigador propone varios modelos y el comportamiento de los datos determina cuál de todos los modelos resulta confirmado. Con el tercer procedimiento, se propone inicialmente un modelo el que, de no ser confirmado por los datos, podrá ser perfeccionado añadiéndosele o eliminándoselle elementos con el fin de lograr un modelo más realista. En este proceso de ajuste del modelo es importante no solamente obtener adecuados indicadores estadísticos sino también lograr una propuesta conceptual teóricamente coherente.

Antecedentes del MEE

Entre los antecedentes del MEE, debemos reconocer la influencia de los trabajos iniciales llevados a cabo a principios del siglo

CAPÍTULO VI
INTRODUCCIÓN AL MODELADO DE ECUACIONES ESTRUCTURALES (MEE) 119
pasado por Spearman sobre correlaciones como base para la concepción del modelo factorial, aplicado posteriormente por Thurstone alrededor de los años 40 del siglo pasado. Igualmente importantes fueron las contribuciones de Howe (1955), Anderson y Rubin (1956), Lawley (1958) y Joreskog (1963), sobre el modelo factorial confirmatorio y el desarrollo del Modelo de Análisis de Ruta atribuido a Wright durante los primeros años del siglo XX. Desde luego, el desarrollo de los MEE no puede dejar al margen al de relaciones lineales estructurales, mejor conocido como LISREL y que derivó en un software especializado (Joreskog, 1973) para el procesamiento de datos en el marco del MEE y que será descrito brevemente más adelante.

Schumacker y Lomax (2010) identificaron al menos cuatro razones que explican la enorme difusión y aceptación del Modelado de Ecuaciones Estructurales entre los científicos del comportamiento. En primer lugar señalan que los investigadores están ahora más que nunca concientes que la incorporación de múltiples variables es absolutamente necesaria para entender mejor la naturaleza de su trabajo. De esta manera, se encontrarían en mejor posición para descifrar la complejidad de su objeto cuya estructura es básicamente multifactorial y confirmar modelos y teorías que dada su sofisticación, otros métodos—que consideran sólo unas pocas variables—no podrían realizar.

En segundo lugar, el MEE facilita el acceso de la información sobre confiabilidad y validez de las medidas involucradas, incorporando en sus procedimientos estadísticos el cálculo de error, el mismo que solía ser obtenido de manera separada. En tercer lugar, el MEE, como procedimiento estadístico, se encuentre en óptimas condiciones para analizar modelos cada vez más complejos, incorporando por ejemplo, el enfoque de niveles múltiples permitiendo estudiar de los efectos de interacción entre ellos.

Finalmente, en cuarto lugar, el MEE actualmente dispone de software especializado que agiliza su desarrollo de una manera cada vez más amigable. Hoy en día se cuenta con programas tales como el LISREL (con aplicaciones para Windows), AMOS (que es una aplicación del IMB-SPSS), SAS y el MPlus, entre otros. Y si bien su utilización demanda cierto entrenamiento en el manejo de la estadística, ha contribuido enormemente a su utilización simplificada.
Debido a que, para una completa comprensión del MEE se requiere conocer los propósitos y aplicaciones de los modelos de Regresión Múltiple y del Análisis Factorial y dado a que todos estos procedimientos echan mano a su vez, de la noción y práctica de la correlación, sugerimos al lector repasar los conceptos expuestos en los capítulos previos de este volumen antes de pasar a profundizar en el desarrollo del MEE.

Relevancia del MEE

Byrne (2010) identifica varias las características del MEE que lo hacen claramente diferente de otros sistemas de análisis multivariado. En primer lugar, a diferencia de la mayoría de los procedimientos multivariados que tienen una lógica exploratoria y descriptiva, el MEE ofrece una aproximación confirmatoria. Asimismo, y dado a que establece la necesidad de especificaciones a priori de las relaciones entre variables, propone una perspectiva inferencial al tratamiento de los datos. En segundo lugar, la mayoría de los enfoques multivariados (por ejemplo los métodos basados en el análisis de regresión) pasan por alto la consideración del error de medida en las variables explicativas (independientes), evitando su identificación o su corrección. El MEE, por el contrario, provee de manera expresa y directa, la estimación de dichas variaciones paramétricas. Tercero, la mayoría de los métodos más conocidos están únicamente basados en mediciones observables; el MEE, en cambio, está en condiciones de incorporar también en el análisis, variables que no son directamente observables (latentes). Estas propiedades han hecho del MEE una técnica muy popular entre los investigadores que no se encuentran en condiciones (por razones éticas o prácticas) de aplicar directamente procedimientos que requieren de manipulación experimental.

Modelos y Ecuaciones

En el Modelado de Ecuaciones Estructurales, un "modelo" es considerado como una representación conceptual que provee, a través de un conjunto de relaciones, explicaciones consistentes e integrales de un fenómeno en particular. Por ejemplo, la toma de decisiones económicas puede entenderse como una función ordenada de la magnitud del riesgo percibido, del grado de certidumbre que ofrece la situación y de la autoeficacia del emprendedor. En otras palabras, la identificación de los grados
de riesgo asociados al emprendimiento, de las posibilidades de acceso a información oportuna que comunique de los riesgos existentes y la existencia o inexistencia de mecanismos psicológicos de atenuación del riesgo, explicarían en gran medida, la naturaleza de las decisiones a favor o en contra del emprendimiento. Se trata pues, de un modelo que permite entender la toma de decisiones al momento de emprender un negocio.

En el MEE, se consideran dos tipos de modelos: a) los modelos de medida como formulaciones teóricas que establecen la manera en que las variables medidas se conjuntan para representar la teoría; y b) los modelos estructurales que representan la teoría que intenta explicar de qué manera ciertos constructos se relacionan con otros constructos en términos causales.

Por otra parte, una ecuación es una igualdad matemática expresada de manera lineal. En el MEE, la ecuación enfoca el modelo desde una perspectiva matemática para su prueba cuantitativa. Así por ejemplo:

\[
\text{Decision} = a \times \text{riesgo} + b \times \text{certeza} + c \times \text{atenuación} + \text{error}
\]

La ecuación describe que la decisión por emprender un negocio es la suma del riesgo, multiplicado por el coeficiente "a", más la certeza multiplicada por el coeficiente "b", más la atenuación multiplicada por el coeficiente "c" más el error. El error representa aquella parte de la decisión que no queda integrada en la relación de dependencia con riesgo, certeza y atenuación y que por lo tanto no la explica adecuadamente. Cuando se ajusta un modelo a un conjunto de datos, se intenta identificar los coeficientes "a", "b" y "c" que reducen los errores de las mediciones, dados unos supuestos de tales mediciones. De esta manera, podemos pensar en una ecuación como una descripción del impacto de todas las variables del modelo (observables y no observables) sobre una variable específica (observable o no observable) (Byrne, 2010).

Diagrama de Ruta

Las ecuaciones estructurales pueden ser representadas tanto mediante una serie de regresiones que explican la influencia de una o más variables sobre otra, como por diagramas de ruta como el que se presenta en la Figura 6.1 Dicha influencia en el MEE
se representa en el análisis de ruta mediante una disposición de elementos que facilita una descripción visual de las relaciones que recoge el modelo y que se supone se articulan en la realidad. Se trata de un equivalente gráfico de las expresiones matemáticas que reúnen las ecuaciones del modelo. Veamos a continuación qué características posee un modelo de ecuación estructural y cómo podemos entenderlo a partir de la lectura de sus elementos constitutivos en un diagrama de ruta.

![Diagrama de ruta que representa un modelo estructural](image)

Figura 6.1. Diagrama de ruta que representa un modelo estructural

Para comprender el modelo presentado en la Figura 6.1, es preciso establecer el significado de la notación simbólica que utiliza un diagrama de ruta cualquiera:

- **Resid**: Las variables que se encuentran confinadas en un círculo o elipse, corresponden a las variables latentes o constructos teóricos.
- **Actitudes**: Las variables que se encuentran encerradas en un rectángulo, señalan variables observables mediante mediciones cuantitativas.
- **Resid**: El círculo más pequeño simboliza un error de medida asociado por lo general a una variable observable.
- **Resid**: La elipse de menor tamaño muestra un error residual de predicción asociado a un factor no observable.
- **→**: La flecha de un solo sentido establece el impacto de una variable sobre otra.
- **←**: La flecha de doble sentido señala la existencia de una correlación o covarianza entre dos o más variables.

De esta manera, del modelo presentado como ejemplo en el
diagrama anterior, podríamos entender lo siguiente: en primer lugar, se observan dos variables latentes no observables: “Decisión” y “Resiliencia”, y cinco variables observables, de las cuales tres miden “Decisión” (riesgo, certeza y atenuación), y dos “Resiliencia” (valores y actitudes hacia el cambio). Todas las variables observables constituyen indicadores cuantitativos de los factores latentes.

Cada variable observable se encuentra vinculada a un error sistemático de medida y en el caso del factor “Decisión” que deberá ser predicido, éste se encuentra asociado a un residuo. La diferencia entre ambos es clara: el error debe reflejar la adecuación de la medida de los factores subyacentes (Decisión y Resiliencia). Este error surge de dos fuentes: a) del error aleatorio de medida y b) de la varianza que surge de algunas características que son específicas de cada indicador o variable. Los residuos, en cambio, representan el error de predicción de un factor endógeno a partir de un factor exógeno. En la Figura 6.1, el residuo señala un error de predicción en “Decisión” (factor endógeno) a partir de “Resiliencia” (factor exógeno).

Adicionalmente, tal como ya se mencionó, las flechas señalan el impacto de una variable o factor sobre otra, expresado a través de los coeficientes de regresión. La dirección de las flechas en el ejemplo de la Figura 6.1, señala que la Resiliencia “causa” la Decisión. Asimismo, aquéllas que relacionan “Resiliencia” con “actitudes” y “valores” y las que enlazan “Decisión” con “riesgo”, “certeza” y “atenuación”, sugieren que los valores de estas variables se encuentran influídos por sus respectivos factores subyacentes y muestran cuantitativamente la magnitud del cambio esperado en las variables observables por cada unidad de cambio en los factores latentes.

Finalmente, las variables interrelacionadas con una flecha bidireccional señalan que dichas variables evidencian valores correlacionados. En el ejemplo de la Figura 6.1, la flecha bidireccional que vincula a dos errores de medición, señala que el error asociado a la variable “valores” y el correspondiente a la variable “actitudes” se encuentran correlacionados.

Volvamos ahora a considerar las ecuaciones estructurales. Además de poder expresar las características del modelo estructural de manera gráfica, éste también puede expresarse en forma de ecuaciones de regresión (ecuaciones estructurales).
Byrne, (2010), describe con exactitud esta forma de expresión:

"Debido a que: a) las ecuaciones de regresión representan la influencia de una o más variables sobre otra, y b) que esta influencia, simbolizada por una flecha unidireccional, orientándose desde la variable de influencia hacia la variable de interés, se puede pensar en la ecuación de la manera de un resumen del impacto de todas las variables relevantes del modelo (observables y no observables) sobre otra variable específica (observable y no observable). De esta manera, una aproximación relativamente simple para formular dichas ecuaciones es identificar las variables que tienen una o más flechas apuntándolas y registrar la suma de estas influencias para cada una de las variables dependientes" (p.11).

Siguiendo estas recomendaciones y revisando nuevamente el diagrama de ruta de la fig. 6.1, podemos identificar que existen seis variables hacia las cuales se dirigen las flechas, cinco corresponden a variables observables (riesgo, certeza, atenuación, valores y actitudes), y una corresponde a variable no observable (Decisión). Por lo tanto, será posible representar estas relaciones en seis ecuaciones separadas:

<table>
<thead>
<tr>
<th>Decisión</th>
<th>=</th>
<th>Resiliencia + residuo1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Riesgo</td>
<td>=</td>
<td>Decisión + error1</td>
</tr>
<tr>
<td>Atenuación</td>
<td>=</td>
<td>Decisión + error2</td>
</tr>
<tr>
<td>Certeza</td>
<td>=</td>
<td>Decisión + error3</td>
</tr>
<tr>
<td>Valores</td>
<td>=</td>
<td>Resiliencia + error4</td>
</tr>
<tr>
<td>Actitudes</td>
<td>=</td>
<td>Resiliencia + error5</td>
</tr>
</tbody>
</table>

Complementariamente, es importante señalar que algunos parámetros del modelo que son fundamentales para su interpretación, no quedan expuestos ni en las ecuaciones ni en los diagramas de ruta. Un ejemplo de ello son las varianzas de las variables exógenas; éstas solo podrán hacerse evidentes a través del software especializado que el investigador utilice. Será por lo tanto preciso que el operador del MEE se familiarice con los procedimientos de estimación que faciliten estas herramientas. En el presente capítulo se promoverá el uso del programa IBM-AMOS de entre otros similares, igualmente conocidos.
Por otro lado, Byrne (2010) señala que se debe aprender a observar señales del comportamiento del modelo allí donde la ausencia de información lo sugiera y cita como ejemplo la falta de covarianza entre, un factor y un residuo. En nuestro ejemplo sería, entre “Resiliencia” y “residual”. Esta ausencia querría decir que la variable exógena no se asocia con ningún tipo de error emergente de la predicción de la variable criterio (o endógena) que es precisamente lo que se espera del modelo.

La estructura del modelo

Todo modelo de ecuaciones estructurales posee dos componentes cuya diferenciación es fundamental: el submodelo de medida y el submodelo estructural.

Al primero de ellos se lo conoce también como Análisis Factorial Confirmatorio (AFC) y se caracteriza por describir el patrón a través del cual, las medidas se cargan o concentran en un factor en particular. Este componente intenta responder preguntas tales como: a) ¿en qué medida las variables observables miden en realidad las variables latentes o factores?; b) ¿cúales de las variables observables miden mejor una determinada variable latente o factor?; c) ¿en qué medida las variables observadas reflejan además de las variables latentes hipotetizadas, otras diferentes no consideradas por el modelo? Estas son preguntas que deben ser respondidas cuando creamos un modelo de medida que defina y cuantifique las variables latentes.

En el submodelo de medición es relevante el factor de carga como indicador de la relación entre las variables observadas y las variables latentes. Este indicador informa cuantitativamente la medida en que una variable observada dada es capaz de medir la variable latente. Otro elemento de interés tiene que ver con la medición del error, es decir, la valoración de aquella porción de la variable observable que mide algo más que la variable latente contemplada en el modelo. Resulta importante conocer cuánto de error se encuentra asociado a cada una de las variables observadas (Schumacker y Lomax, 2010). Mayores detalles de este submodelo se brindarán en el Capítulo VII de este volumen.

El segundo componente (submodelo estructural) se centra en las relaciones entre variables o factores latentes no observables. En otras palabras, analiza los vínculos causales entre constructos del modelo. En nuestro ejemplo diagramado, podemos decir
que el submodelo estructural intenta explicar de qué manera la Resilencia “causa” o determina (predice) la “Decisión”, y también descubrir qué otras variables latentes debemos considerar para explicar mejor (o predecir mejor) la Decisión.

Figura 6.2. Ilustración de los componentes del modelo de ecuaciones estructurales

Byrne (2010) explica la diferencia entre los submodelos descritos demarcando en un mismo diagrama, los ámbitos del submodelo de medida como el estructural. Así, en nuestro ejemplo el submodelo de medida se encuentra enmarcado en los cuadros, mientras que el submodelo estructural se encuentra dentro de la elipse (Figura 6.2).

Identificación del Modelo

La discusión acerca de la identificación del modelo es un asunto complejo y su tratamiento cae fuera del alcance de este libro. No obstante, por la importancia que tiene para entender la estimación de los parámetros, intentaremos destacar los aspectos centrales de la noción. Byrne (2010) señala que el asunto de la identificación del modelo tiene que ver con que si existe o no un determinado conjunto de parámetros que sea consistente con los datos. “Esta pregunta tiene que ver con la trasposición de la matriz varianza - covarianza de las variables observadas (los datos) a los parámetros estructurales del modelo que se estudia. Si se puede encontrar una única solución para los valores de los parámetros estructurales, entonces el modelo puede
considerarse identificado. En consecuencia, los parámetros pueden ser estimables y por lo tanto el modelo puede someterse a prueba. Al contrario sí el modelo no puede ser identificado, quiere decir que los parámetros están sujetos a arbitrariedad, lo que supone que diferentes valores paramétricos pueden definir un mismo modelo(...)y por lo tanto éste no podrá ser evaluado empíricamente” (p.33). La autora señala también que los modelos pueden ser solo identificados, sub-identificados y sobre-identificados, dependiendo de la relación que existe entre el número de datos observados y el número de parámetros estimables. Los primeros, carecen de interés científico, pues poseen una relación uno a uno entre los datos y los parámetros estructurales, lo que supone que el número de varianzas y covarianzas iguala al número de los parámetros a ser estimados\(^1\).

En el caso de los modelos sub-identificados, el número de parámetros estimables excede al número de datos observados (varianzas y covarianzas de la matriz). En tal caso, el modelo contiene información insuficiente y requerirá de un número infinito de soluciones.

Por lo tanto, podemos entonces asumir que lo deseable es poseer un modelo sobre-identificado; es decir, un modelo en el que los datos observados sean proporcionalmente mayores que los parámetros estimables. De esta relación resulta un número positivo de grados de libertad que permitiría el rechazo del modelo, haciéndolo científicamente relevante.

Dos son las condiciones básicas para identificar un modelo. En primer lugar, como ya se dijo, el número de parámetros a estimar ha de ser igual o inferior al número de observaciones (dicho de otro modo, el número de grados de libertad del modelo ha de ser igual o superior a 0). En segundo lugar, todas las variables latentes (factores y errores de medida) deberían tener una escala, lo que implica por lo general asignar el valor de 1.00 (Unit Loading Identification).

En la Figura 6.3, que se presenta más abajo, la especificación $E_i \rightarrow \text{Concepadretotal} = 1.0$ asigna a E_i una métrica que corresponde a la de la varianza única de “Concepadretotal”. Lo mismo se realiza con respecto a $E_2, E_3, E_4, \ldots, E_n$. La misma estrategia se utiliza para escalar los factores, de modo que “Armonía

\(^1\) Debe saberse que los grados de libertad que se consideran en las estimaciones del modelo se calculan estableciendo la diferencia entre datos observados y parámetros estimables.
Familiar" \rightarrow "Conocепadre\text{total} = 1.0 \). Sin introducir este valor que constituye un forzamiento \((\text{constraint})\), las escalas de las variables latentes carecerían de sentido y no se garantizaría la sobre-identificación del modelo.

![Diagrama](image)

Figura 6.3. Elementos constitutivos del modelo: Variable latente no observable, variables observables y errores asociados a la medida, además de valores forzados que favorecen su identificación

Para determinar la identificación del modelo, debe calcularse el número de observaciones disponibles y para ello, se aplica la siguiente fórmula: \(n = \frac{v(v+1)}{2} \), donde \(v \) es el número de variables observadas. En el ejemplo, el número de observaciones (datos de entrada) equivale, pues, a \(15(15+1)/2 \), esto es, 120 observaciones que corresponden a las 6 varianzas más las 15 covarianzas entre las variables observadas (ver Figura 6.4).

El número de parámetros a estimar, por su parte, corresponde al número de varianzas y covarianzas de las variables exógenas (factores y errores de medida), más los efectos directos de los factores sobre los indicadores. En nuestro ejemplo de la Figura 6.4, tenemos, por consiguiente, 12 parámetros a estimarse mediante el modelo (1 varianza del factor, 6 varianzas de los errores de medida y 5 efectos directos del factor sobre los indicadores, puesto que el peso de carga forzado a 1.0 de la variable "Conocепadre\text{total}" no se cuenta). De esta manera, disponemos de un modelo sobre-identificado con 108 grados
de libertad que equivalen a 120 puntos de datos menos 12 parámetros por estimar.

Figura 6.4. Cantidad de parámetros que deben tomarse en cuenta para calcular la identificación del modelo
Estimación de parámetros en el MEE

El método más común de estimación en el MEE es el de máxima verosimilitud (Maximum Likelihood), y consiste en una serie de procedimientos estadísticos para ajustar un modelo y encontrar sus parámetros. Sin entrar en excesivos detalles, este método nos sugiere que escojamos como valor estimado del parámetro aquél que tiene mayor probabilidad de ocurrir según lo que hemos observado. En otras palabras deberá ser el que resulte más compatible con los datos observados.

Los parámetros más relevantes del MEE que tienen que ver con la covarianza de las relaciones estructurales modeladas, son los coeficientes de regresión, las varianzas y las covarianzas de las variables independientes. En ocasiones el análisis de medias puede ser también un elemento central del modelo. Con propósito de procesamiento, los datos observables deben ser traducidos en parámetros mediante procedimientos matemáticos que pueden variar dependiendo del paquete estadístico empleado para analizar el MEE. En el caso del AMOS (paquete que adoptaremos como guía básica de procedimiento de análisis), algunos de los estimadores más relevantes son los pesos estandarizados de regresión para el factor común y para cada uno de los indicadores observables (las cargas del factor); el cuadrado de los coeficientes de correlación múltiple (R^2), que describe la cantidad de varianza que el factor común explica en las variables observables; y la X^2 (Chi cuadrado) y el Error de Aproximación Cuadrático Medio, (o RMSEA, en sus siglas en inglés, que da cuenta de la discrepancia en grados de libertad, cuando se mide una población), como indicadores del ajuste del modelo a los datos.

Volveremos sobre estos estimadores y su aplicación práctica cuando ejemplifiquemos el desarrollo del AMOS para el análisis de los modelos estructurales.

Supuestos para la aplicación del MEE

La aplicación del MEE requiere que se asuman los siguientes supuestos:

a) **Distribución normal**: Debe asegurarse una distribución normal multivariada debido a que el MEE utiliza el método de máxima verosimilitud. Pequeñas variaciones en la
normalidad de la distribución son capaces de provocar grandes diferencias en la prueba de X^2. Los MEE asumen que las variables endógenas deben ser distribuidas de manera continua con residuos normalmente distribuidos. De hecho, si bien este supuesto casi nunca se cumple en la práctica, se espera que los residuos en el MEE no solo se distribuyan con una normalidad univariada sino que además prueben una distribución de normalidad multivariada.

Los especialistas han desarrollado diferentes métodos para manejar el problema de las distribuciones no normales de variables aunque de naturaleza continua. Así, es posible que se quiera administrar una escala Likert para medir, por ejemplo, la resiliencia. La escala establece una serie de valores a lo largo de un continuo de resiliencia y si bien los datos en sí mismos no se distribuyen de manera continua, podemos asumir que la distribución del constructo medido, al no tratarse de una variable dicotómica, sí se distribuye de manera continua.

b) Relaciones lineales: En el MEE debe asumirse la linealidad de la relación entre las variables exógenas y endógenas (o variables independientes y dependientes).

c) Datos atípicos: En el MEE el análisis de los datos debe hacerse a partir de una base libre de casos extremos. Los datos atípicos suelen afectar la significatividad del modelo.

d) Secuencia: En el MEE se espera que haya una relación de causa y efecto entre las variables exógenas y endógenas, por lo tanto aquéllas deben preceder a éstas. Debe establecerse un relacionamiento inequívoco entre las variables, es decir, en el MEE las covarianzas deben ser legítimas.

e) Identificación del modelo: En el MEE, las ecuaciones deben ser mayores que los parámetros estimados o los modelos deberán estar muy bien identificados. Los modelos sub identificados no son considerados por el MEE.

f) Tamaño de la muestra: Si bien no existe una apreciación única sobre este tema, en el MEE, se aplica la regla de oro que establece que para 10 indicadores, debería obtenerse 200 observaciones. Ya que el MEE se encuentra relacionado de alguna manera con la regresión múltiple, 15 casos por variable medida parecería una proporción razonable. Bentler and Chou (1987) recomendaron considerar cinco casos por parámetro estimado (no por variable medida) en el análisis,
solo si se prueba que los datos se comportan en completo apego a los supuestos estadísticos (distribución normal, ausencia de casos faltantes, ausencia de casos atípicos, etc.). El empleo de muestras pequeñas puede dificultar el logro de una solución satisfactoria, o peor aún, provocar soluciones incorrectas al reducir exactitud de la estimación. El error estándar se calcula bajo el supuesto de las muestras grandes. Por otro lado, cuando los datos no están distribuidos de manera normal, se requiere de muestras más amplias. Cuando los datos generan asimetría o kurtosis en la distribución, la recomendación es obtener muestras mayores.

g) **Errores no correlacionados:** En el MEE se asume la falta de correlación entre las variables que producen error.

h) Datos: El MEE requiere de datos medidos por lo menos en una escala intervalar. No obstante, se podría considerar variables ordinales, siempre y cuando se distribuyeran normalmente, es decir, si asumieran varios valores y si evidenciaran simetría y kurtosis con valores próximos a 0 (Blunch, 2011).

Herramientas informáticas en el MEE

La complejidad de su análisis ha hecho que el MEE requiera necesariamente de herramientas computacionales para poderse llevar a cabo de manera adecuada. Actualmente existen varias alternativas disponibles adecuadas para dicho propósito. Entre las más conocidas se encuentran LISREL, Mplus, SAS y AMOS y si bien todas ellas sirven al mismo propósito, cada una posee sus especificidades que las hacen más o menos convenientes.

LISREL (Linear Structural Relations Model) es posiblemente el programa más conocido y empleado para el análisis del MEE. El advenimiento de esta herramienta fue de la mano con el desarrollo del propio modelo, propiciado por Karl Jöreskog (1969, 1973), Ward Keesling (1972) y David Willey (1973). Las primeras aplicaciones datan de los primeros años de la década de los 70 en el siglo pasado; a partir de entonces esta herramienta se popularizó en la medida en que se volvía un instrumento más amigable y sencillo y se superaba parcialmente el complejo sistema de notación que utilizaba el griego en su sintaxis. Actualmente, se dispone de versiones LISREL para Windows que introducen el programa a contextos más conocidos; asimismo, el desarrollo
de SIMPLIS (SIMPler LISrel) facilitó enormemente su uso. No obstante, su adecuada aplicación demanda a los operadores un entrenamiento especial en estadística.

Mplus. Este es un programa alternativo cuya licencia de uso puede obtenerse de Muthén & Muthén. El programa se encuentra disponible para académicos y estudiantes en la Universidad de Texas en Austin, a través del servidor STATS. Para acceder a dicho servidor es preciso obtener una cuenta especial y validarla a través del Servicio Windows NT. Solo entonces es posible descargar el programa y conectarse. Mayores detalles pueden ser obtenidos en: General FAQ #36: Connecting to published statistical and mathematical applications on the ITS Windows Terminal Server.

Buscando facilitar un óptimo acceso al MEE los creadores de Mplus desarrollaron un mecanismo para importar datos y diversos comandos efectivos para la especificación de modelos. Todos los comandos de Mplus se encuentran especificados en una sintaxis, con su respectivo generador. Si el lector no se encuentra cómodo leyendo datos y especificando modelos estadísticos a través del uso de comandos de sintaxis, Mplus probablemente no será una buena opción. A diferencia de AMOS y LISREL, Mplus no permite dibujar diagramas de ruta ni estimar el modelo, por lo tanto es preciso que el investigador escriba la sintaxis. Mplus tampoco puede leer archivos en formato SPSS y los datos deben ser archivados en formato ASCII. A pesar de ello, Mplus es un programa con gran capacidad para estimar modelos complejos.

Por lo tanto, si se está en disposición para aprender a usar el software para generar la sintaxis con el fin de analizar los datos, probablemente Mplus pueda ser una buena opción, especialmente si se toma en cuenta sus ventajas especiales: a) su capacidad para construir modelos en base a variables dicotómicas o categóricas; b) su capacidad para construir modelos que contengan variables latentes categóricas; c) su adecuada información acerca del método de máxima verosimilitud y sobre el manejo de datos faltantes tanto para AFE, AFC y MEE; d) su habilidad para ajustar modelos jerárquicos o de niveles múltiples, modelos de AFC y MEE.

SAS. SAS ha desarrollado el procedimiento TCALIS que es una versión mejorada del procedimiento original CALIS. El procedimiento TCALIS además de mantener las potencialidades
del CALIS ofrece nuevas ventajas no disponibles en el PROC CALIS. Dichas ventajas incluyen el análisis multigrupo el análisis de medias estructurales y lenguajes para el modelado de amplio espectro.

El procedimiento SYSLIN del software SAS/ETS ofrece también la posibilidad de ajustar ciertos modelos de ruta así como ecuaciones estructurales lineales. PROC TCALIS y PROC SYSLIN se usan también en el modelado de variables latentes. Ambos procedimientos, el TCALIS y el SYSLIN permiten especificar un modelo como sistema ecuaciones lineales. Cuando existen varias ecuaciones, una variable podría operar como dependiente en una ecuación y como independiente en otra (SAS/STAT, 2008).

AMOS IBM SPSS. AMOS (Analysis of Moment Structures) es otro programa destinado al análisis de datos para MEE, llamado también análisis de covarianza de estructuras o modelado causal. Incluye muchas de las bien conocidas técnicas convencionales incluyendo los modelos lineales y el análisis factorial común.

AMOS es un programa visual, de empleo fácil, mediante el cual se puede rápidamente especificar, verificar y modificar el modelo propuesto de manera gráfica con la ayuda de herramientas muy simples. Asimismo, el programa facilita la evaluación del ajuste del modelo, permite modificaciones y obtener reportes y gráficos relativamente avanzados.

Una vez especificado el modelo de manera gráfica, AMOS ejecuta de manera automática los procedimientos estadísticos y despliega los resultados. Este programa fue diseñado como instrumento para la enseñanza de este poderoso y al mismo tiempo simple método para estudiar MEE.

AMOS por lo tanto, integra una interface gráfica con un avanzado motor de cálculo para el MEE. El componente de publicación de diagramas de ruta, provee una representación clara de los modelos tanto para estudiantes como para investigadores. Los métodos matemáticos desarrollados por AMOS se encuentran entre los más efectivos y sofisticados que se conoce (Arbuckle, 2010).

Modelando con AMOS

Dada la versatilidad, funcionalidad y amigabilidad de AMOS, utilizaremos este programa para ilustrar, paso a paso, el desarrollo del modelado de ecuaciones estructurales. Para ello,
elegiremos el modo de especificación gráfico (AMOS Graphics) por ser el más elegante y fácil de emplear, en contraste con AMOS BB.NET y AMOS C# que demandan un manejo más especializado del formato de las ecuaciones estructurales. A continuación introduciremos al lector en el uso del modo gráfico de AMOS, desde los procedimientos más básicos.

En primer lugar, una vez que se accede al programa desde su computador, obtendrá un cuadro de diálogo como el que se muestra en la Figura 6.5. En dicho cuadro, Ud. Podrá identificar tres espacios claramente definidos; a la derecha se tiene un espacio vacío que servirá para ubicar los diagramas que el programa irá desplegando a medida que el investigador los vaya dibujando, volviéndose de las herramientas que, en forma de iconos, se pueden hallar en la columna situada al extremo izquierdo del cuadro de diálogo. Si bien el programa ofrece más de 40 iconos, en el cuadro de diálogo se ofrecen únicamente aquellos que son básicos en el diagramado de un modelo.

Figura 6.5. Cuadro inicial o de contacto con el programa AMOS Gráfico que presenta tres secciones: galería de funciones, área de mensajes de texto y el área de dibujo.
Si Ud. mueve el cursor sobre los diferentes íconos, éstos se iluminarán y el programa ofrecerá una breve descripción de su función. En el espacio central del cuadro se tiene un área donde el programa desplegará el cálculo de las estimaciones del modelo. En su parte superior se encuentra un botón visible cuya parte iluminada (izquierda), cuando es pulsada, permite visualizar el modelo diseñado. La parte derecha del ícono, permite, al ser pulsada, desplegar los parámetros estimados del modelo, este ícono solo opera cuando el modelado está listo como para permitir el cálculo de dichos parámetros.

Antes de iniciar el diagramado, es necesario describir el proceso de manipulación de los datos a partir de los cuales se llevará a cabo el modelado correspondiente. Por lo tanto, para cargar los datos, en el cuadro de diálogo de inicio, elijase del menú la opción “File” y luego “Data Files”. Dicha elección mostrará la siguiente ventana:

![Figura 6.5. Cuadro de diálogo del programa AMOS que permite identificar el archivo que soporta los datos](image)

Pinche sobre “File Name” e identifique entre sus archivos el que contenga los datos a ser analizados.

Por defecto, AMOS busca files o carpetas del programa SPSS (preferentemente de la misma versión de AMOS), por lo tanto,
será mejor contar con una base de datos .SAV para facilitar la interacción. Una vez identificado el archivo, resáltelo y seleccione "Ok". La nueva ventana le ofrece también la opción "View data" para visualizar los datos directamente desde la base .sav. Ahora ya está listo para dibujar su diagrama de modelo.

A continuación ejemplificaremos el uso de SPSS - AMOS valiéndonos de un estudio realizado por el autor en una muestra de 101 jóvenes de ambos sexos con edades entre los 15 y 17 años, enrolados todos en segundo y tercer año de secundaria de una unidad educativa privada.

Los argumentos teóricos que justificaron el modelo señalaban que la “armonía familiar” era un constructo que se explica a través de una serie de variables que tenían que ver con la calidad y cantidad de intercambios positivos entre el joven adolescente y sus padres, basados en la naturaleza de las relaciones establecidas entre ellos. La calidad del funcionamiento familiar depende de una multiplicidad de factores, muchos de los cuales tienen que ver con la naturaleza y tipo del vínculo que se establece entre padres e hijos. Los argumentos teóricos del modelo propuesto se encuentran respaldados por abundante investigación. Por ejemplo, véase Bronfenbrenner (1987, 1994), Emery y Laumann-Billings (1998), Frías y Cols., (2000a, 2000b), Juby y Farrington, (2001), McCord, (2001), Straus, Sugarman y Giles-Sims, (1997), Wells y Rankin (1991), entre otros.

Complementariamente, el presente modelo incorporó la percepción que tienen los hijos de la preocupación expresada por los padres (padre y madre) a través de acciones de control y vigilancia de sus actividades cotidianas de la percepción cerca del estado de sus relaciones con ellos y del juicio del grado de vinculación de sus iguales más próximos con comportamientos antisociales. El supuesto sometido a prueba era que todas estas variables subyacían a la variable latente o constructo “Armonía familiar”.

Una vez clarificado el modelo teórico que será sometido a prueba, podemos pasar a diagramarlo con las herramientas de AMOS (siempre y cuando se haya elegido proceder con el modo gráfico de dicho programa). Con el propósito de dibujar el modelo, se deberá proceder de la siguiente manera:
Volvamos al cuadro de diálogo inicial o de "input" e intentemos dibujar un modelo conformado por una sola variable latente y seis variables observables. Concentrémonos primero en los recursos existentes sobre el lado izquierdo que le permitirán realizar el diagrama de ruta. Haga "click" sobre la forma rectangular (□) para dibujar en primera instancia las variables observables. Luego arrastre el ícono sobre el área de dibujo a la derecha del cuadro de input. Haciendo nuevamente "click" seis veces seguidas, conseguirá reproducir seis rectángulos para alojar a las seis variables observables del modelo. La Figura 6.7 reproduce el resultado logrado:

Figura 6.7. Demostración de la ubicación correcta para producir el dibujo del modelo en la ventana principal de la AMOS

A continuación repita la operación pero eligiendo la elipse (○) para dar cabida a la variable latente o factor y conecte la variable latente con las observables colocando las flechas de un solo sentido (→). El procedimiento para dibujar las flechas es el mismo en todos los casos, haga "click" sobre la flecha y luego lleve el cursor a la zona de dibujo y repita la operación cuantas veces sea necesario. El resultado se presenta en la Figura 6.8.
Figura 6.8. Ilustración del empleo de elipses, rectángulos y flechas en el proceso de perfilar gráficamente el modelo.

Adviértase que la dirección de las flechas señalan la relación causal propuesta en el modelo; en este caso, estamos asumiendo que la variable latente causa las variables observables. Para completar el dibujo del modelo, será preciso incorporar círculos o elipses más pequeñas contiguas a las variables observables. Dichas elipses pequeñas permitirán tomar en cuenta en el modelo, el error de medición que es específico de cada indicador observable; y como dicho error no es directamente observable, entonces corresponde que las consideremos elementos latentes. De esta manera habrán siete variables latentes, una que corresponde al factor común y seis a los errores de medición de cada variable observable. Nótese asimismo que, como se asume que el error debe tener una influencia sobre la variable observable, la dirección de la flecha se dirige de la variable latente (error) hacia la variable observable.

Podemos utilizar el botón para mover objetos para desplazar a voluntad los elementos del diagrama. El botón puede ser identificado por el dibujo de un camión rojo. Activelo pulsando sobre el ícono y luego conseguirá mover algún elemento del modelo colocando el cursor sobre éste y arrastrándolo según se desee. Podemos también, si deseamos, cambiar el tamaño del elemento con el botón correspondiente y si nos equivocamos, podemos borrarlo utilizando el botón de borrado, distinguible
por la figura en forma de X. Al final de todas las operaciones realizadas, el cuadro de diálogo de input, lucirá como en la Figura 6.9.

Figura 6.9. Ilustración del modelo incluyendo el error de medición específico no observable de cada indicador observable, en forma de elíptes pequeñas

Ahora estamos listos para alojar el nombre de cada una de las variables en los espacios delimitados por los rectángulos y las elíptes. Para ello, activando el botón “list variables in data set” ubicado en el mismo lugar, se desplegará una ventana reproduciendo la lista de todas las variables de la base de datos en SPSS (ver Figura 6.10). Sin embargo para que esto ocurra debemos asegurarnos de que el archivo correspondiente haya sido leído por el programa AMOS. Esta instrucción ya fue descrita al inicio de esta sección.

Para asignar el nombre de las variables observables a sus respectivos espacios, simplemente arrástrelas del cuadro de lista de variables hacia el rectángulo correspondiente. Otra forma de hacerlo es situar el cursor sobre el rectángulo y hacer “click” con el botón derecho del mouse.

CAPÍTULO VI
INTRODUCCIÓN AL MODELADO DE ECUACIONES ESTRUCTURALES (MEE)
Figura 6.10. Listado de variables que se encuentran en el editor de datos del programa AMOS, leído directamente de la base .sav del SPSS

Figura 6.11. Cuadro de diálogo que permite introducir el nombre de la variable y ajustar los parámetros y formatos

Al hacerlo, se desplegará una ventana con diferentes opciones, elijase “Propiedades del Objeto” (Objects Properties). Esta operación abrirá una nueva ventana en la que se leen entre otras,
las opciones “texto” y “parámetros”. Elija “texto” y en la casilla correspondiente a “nombre de la variable” escriba de manera directa, el mismo nombre que está en la base de datos. Repita la operación para nombrar todos y cada una de los rectángulos (variables observables). En la misma ventana se dispone también de las opciones “tamaño del carácter” (Font size) y “estilo del caracter” (Font style). Su elección le permitirá ajustar el tamaño de la letra a las proporciones del rectángulo. En la parte inferior se cuenta también con una casilla para etiquetar la variable (ver Figura 6.11).

Otra manera aún más directa de hacerlo es pinchando en el botón correspondiente a “propiedades del objeto” ubicado en el panel izquierdo del cuadro de “input” y seguir los pasos ya descritos. El proceso es similar para nombrar las variables latentes que representan el error de medición. Al final de esta serie de operaciones, deberemos contar con un diagrama que luce como en la Figura 6.12:

Figura 6.12. Estado final del dibujo del modelo, incluyendo todos sus parámetros y componentes

CAPÍTULO VI
INTRODUCCIÓN AL MODELADO DE ECUACIONES ESTRUCTURALES (MEE)
Nótese que entre el error de medición correspondiente a las variables observables, representadas por la ellipse de menor tamaño y dichas variables, se puede advertir un número 1.0; este parámetro corresponde al valor de los pesos o cargas de regresión (regression weight) y corresponde al valor forzado para facilitar la sobre-identificación del modelo.

El cuadro de diálogo de “propiedades del objeto”, en la pestaña de parámetros, ofrece también la posibilidad de forzar los parámetros o unidades de identificación de carga (Unit Loading Identification). Para ello, del cuadro de diálogo “Input”, seleccione “View” y luego “Parameters”. Se desplegará una ventana en cuya parte inferior mostrará la casilla correspondiente a “Regression weight”. Posteriormente, haga click sobre la flecha que vincula el factor con una variables (al hacerlo notará que el color de la flecha cambiará a rojo) al mismo tiempo que se habilita la casilla correspondiente. Coloque en ella “1” y ajuste el estilo y tamaño del carácter.

Figura 6.13. Ilustración del procedimiento empleado para forzar los parámetros o unidades de identificación de carga en el modelo dibujado

2 Si bien la decisión de qué parámetro forzar es básicamente arbitraria, se recomienda que la elección se base en la medida que arroje la mayor confiabilidad.
Esta operación hará que de manera automática, se incorpore el parámetro 1 entre el factor y la variable correspondiente. Repita la operación para forzar el parámetro también en cada uno de los errores de medida, conectados con sus respectivos indicadores, tal como se muestra en la Figura 6.13.

Calculando los Estimados del Modelo

Para obtener los estimados del modelo, en primer lugar será necesario establecer las propiedades del análisis que se pretende realizar y con ello definir los productos que esperamos que AMOS nos ofrezca. Para ello, deberemos, desde el cuadro de diálogo "Input", seleccionar "View" y luego "Analysis properties" (Propiedades del Análisis). En la ventana correspondiente, elija "Output" (Resultados) y en este nuevo cuadro de diálogo selecciónese "Minimization history" (Historia reducida), "Standardized estimates" (Estimados estándares), "Squared multiple correlations" (Correlaciones múltiples al cuadrado) y "Modification indices" (Índices de modificación), manteniendo en "4" los "Threshold for modification indices" (Umbrales para Índices de Modificación) (ver Figura 6.14). Desde luego, si el investigador requiere de propiedades adicionales, las puede demandar simplemente seleccionándolas. Finalmente, cierre el cuadro con un "click" en la X de la esquina superior derecha. Ahora estamos listos para obtener los estimados del modelo.

Para iniciar la estimación, regrese nuevamente al cuadro de diálogo de entrada, elija del menú "Analyze" (Analizar) y haga click en "Calculate estimates" (Calcular estimados). Esta operación genera dos efectos: en primer lugar, la columna que se encuentra entre el área de los íconos y el destinado a la diagramación, despliega los siguientes elementos: a) "Unstandardized estimates" (Estimados no estandarizados) y "Standardized estimates" (Estimados estandarizados); b) la descripción de la base de datos activa la cantidad de iteraciones requeridas para lograr los estimados y el anuncio de que la descripción de los resultados requeridos se encuentran disponibles en "Writing output". Asimismo, se despliega el valor de la Chi Cuadrado (X^2) y los grados de libertad para calcularlo; c) finalmente, en la parte inferior de esta área intermedia, se presenta el listado de archivos de diagramación.

El segundo efecto visible es la iluminación del doble ícono ubicado en la parte superior del área intermedia. El botón de la izquierda del ícono (Input path diagram) permite la especificación del modelo, mientras que el de la derecha facilita ver los resultados del diagrama de ruta (View the output path diagram). Al presionar sobre este último, se despliegan por defecto, los estimados no estandarizados del modelo. Los estimados estandarizados se logran iluminando la opción correspondiente en la columna central.

Figura 6.15. Ilustración que destaca los valores estimados del modelo: estandarizados de regresión y coeficientes de correlación múltiple al cuadrado.
Al completar el análisis, AMOS ofrece dos formas para acceder a los resultados: el modo gráfico y el modo textual. En el primer caso, los datos se presentan a través del diagrama de ruta y se produce haciendo “click” en el ícono “View Output Path Diagram” (Vista de Resultado en Diagrama de Ruta) que se encuentra situado, como dijimos, en la parte superior de la zona central del cuadro de diálogo principal. En la segunda modalidad, el acceso se realiza pulsando el ícono “Text Output” ubicado en el extremo izquierdo del cuadro principal de AMOS Graphics. Haciendo “click” en él, se obtiene una ventana dividida en dos porciones, en el segmento izquierdo se tiene un resumen en forma de árbol, de las diferentes alternativas de presentación de los datos, y en la columna de la derecha, en lugar del diagrama de ruta, se muestra una secuencia de tablas con el comportamiento de los indicadores. A continuación, describiremos brevemente ambos modos de presentación de los estimados.

Modo Gráfico. La Figura 6.15 ilustra la forma gráfica de presentación de los Estimados. Nótese que en dicha figura quedan perfectamente diferenciados dos grupos de números colocados en columna. Estos estimados se producen cuando solicitamos “Estimados estandarizados” (Estandarized Estimates) en el espacio central del cuadro de texto principal. La columna de la derecha muestra los Pesos de Regresión Estandarizados (Standerized Regression weight), es decir las cargas del factor para “Armonía Familiar” y cada uno de los indicadores, y señalan la medida en que las variables correspondientes (Conocepadretotal, Conocemadretotal, Relacionespadre, etc.), constituyen los mejores indicadores de “Armonía Familiar”.

Los números de la columna de la izquierda, en cambio, constituyen coeficientes de Correlación Múltiple al Cuadrado (R^2) y nos indican la cantidad de varianza explicada por el Factor Común, para cada una de las variables observadas. Por lo tanto, de esta exposición gráfica podemos llevar a cabo la siguiente descripción de los datos. Para el caso de los Estimados Estandarizados, los Pesos de Regresión para nuestro ejemplo no dicen lo siguiente:

3 El modo gráfico permite acceder también a los estimados no estandarizados, es decir parámetros estimados en la métrica original de los indicadores. Es importante señalar que muchos investigadores y métodologías expresan mayor preferencia por los estimados no estandarizados, debido principalmente a dos razones. Primero, porque el análisis mismo está basado en variables no estandarizadas y segundo, porque las valores estandarizados pueden conducir a conclusiones incorrectas.

CAPÍTULO VI
INTRODUCCIÓN AL MODELADO DE ECUACIONES ESTRUCTURALES (MEE)

b) Por otro lado, debe notarse que “Amigosantisociales” y “Desacuerdopadres”, ofrecen valores negativos, lo que indicaría que la ausencia de estas variables se asocia con “Armonía Familiar”. Esto es particularmente cierto con el caso de la variable “Desacuerdopadres”.

c) Nótese también que en relación a los Coeficientes de Correlación Múltiple al Cuadrado, en principio podemos decir que “Armonía Familiar” explica el 65 por ciento de la varianza de “Relaciónmadre” y el 44 por ciento de “Conocemadretotal”. El Factor “Armonía Familiar”, sin embargo, parece explicar muy poca proporción de la varianza de las variables restantes.

A este punto resulta necesario hacer una primera consulta acerca de las condiciones de Ajuste del modelo propuesto. Nótese que la determinación de dicho ajuste constituye la tarea más importante del MEE. El investigador propone un modelo y luego debe necesariamente ponerlo a prueba. Para ello, elijase “Analyze” del cuadro de diálogo principal y luego hágase “click” en “Calculate estimates”, ello hará que en la columna central del mismo cuadro se despliegue el valor de la Chi Cuadrado (X^2) y los grados de libertad para su cálculo, véase la Figura 6.16.

La primera impresión al constatar el valor de la X^2 obtenida es que ésta es muy alta ($X^2 = 65.1$ con 9 gr), por ello fácilmente puede rechazarse la hipótesis nula de que el modelo tiene un buen ajuste. El lector debe advertir que la hipótesis nula que se plantea el investigador es que “el modelo tiene un buen ajuste” y que por lo tanto en este caso particular, el propósito es NO rechazar la hipótesis nula. Como la explicación de esta forma de proceder cae fuera de los propósitos de este libro, se sugiere al lector interesado, consultar MacCallum, Browne y Sugawara (1996), Bentler y Bonett (1980), Byrne (2010) y American Psychologist en su número 50 del año 1995, en sus páginas 1098 a 1103. Esta suposición y constatación preliminar amerita mayor información,
la misma que deberá ser obtenida a través de la presentación de estimados mediante el modo textual (Text Output).

Figura 6.16. La ilustración señala el lugar que debe consultarse de manera preliminar, el ajuste del modelo

Para acceder a la información ofrecida por el modo textual, hágase "click" en el ícono "View text" localizado en la columna izquierda del cuadro de diálogo principal. Ello hará que en la columna central aparezca, (como ya se mencionó) una descripción resumen del análisis, notas para el grupo, resumen de las variables del modelo, resumen de los parámetros, notas para el modelo, estimados, historia de minimización, ajuste del modelo y tiempo de ejecución. Para desplegar cualquiera de estos, basta con pinchar sobre la opción correspondiente.

a) **Resumen del Análisis.** Ofrece un rápido repaso del modelo, incluyendo su identificación:

Fecha y Hora:
Date: viernes, 16 de septiembre de 2011
Time: 04:18:56 p.m.

Título de la base: Cnaplibro.

Notas del Grupo:
El modelo es recursivo
Tamaño de la muestra = 101

b) Resumen de las Variables (Grupo 1). Presenta el listado completo de las variables involucradas en el modelo:

Su modelo contiene las siguientes variables (Grupo número 1):

Variables endógenas observables:

Conocemadre total
Relaciones padre
Relaciones madre
Amigos antisociales
Desacuerdopadres
Conocepadre total

Variables exógenas no observables:

Armonía Familiar
E1
E2
E3
E4
E5
E6

Número de variables en su modelo: 13
Número de variables observadas: 6
Número de variables no observadas: 7
Número de variables exógenas: 7
Número de variables endógenas: 6

Resumen de parámetros (Grupo 1)

4 Un modelo recursivo es aquel en el que ninguna variable tiene efecto sobre sí misma. Esto significa que en el diagrama de ruta del modelo, no es posible empezar en cualquier variable y, siguiendo una ruta de flechas de una sola dirección, regresar a la misma variable.

CAPÍTULO VI

INTRODUCCIÓN AL MODELADO DE ECUACIONES ESTRUCTURALES (MEE)
Número de los distintos "simple moments": 21

Notas sobre el Modelo (Default model):

Cómputo de los grados de libertad (modelo por defecto):
Número de los distintos "sample moments": 21
Número de los distintos parámetros a ser estimados: 12
Grados de libertad (21 - 12) = 9

Resultados (Default model)

Mínimo logrado

Chi-cuadrado = 65.070
Grados de libertad = 9
Nivel de probabilidad = .000

c) Estimados. Presenta el listado de tablas con los indicadores solicitados: Pesos de Regresión, Pesos de Regresión Estandarizados, Varianzas y Correlaciones Múltiples al Cuadrado. La Figura 6.17 ilustra la forma de presentación de estos productos.

Figura 6.17. Ilustración que muestra el aspecto que adopta la ventana principal con los estimados desplegados

CAPÍTULO VI
INTRODUCCIÓN AL MODELADO DE ECUACIONES ESTRUCTURALES (MEE)
A continuación, siguiendo a Byrne (2010) se presentan las tablas solicitadas con sus respectivos estimados. A través de ellas completaremos nuestro análisis del modelo ejemplificado:

Tabla 6.1.

Listado de estimados estandarizados y no estandarizados obtenidos para cada variable, junto con varianzas y correlaciones múltiples del modelo

Pesos de Regresión: (Grupo número 1 - Default model)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Peso</th>
<th>Estimado</th>
<th>Estándar</th>
<th>Varianza</th>
<th>Correlación múltiple</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable 1</td>
<td>0.5</td>
<td>0.6</td>
<td>0.7</td>
<td>0.8</td>
<td>0.9</td>
</tr>
<tr>
<td>Variable 2</td>
<td>0.3</td>
<td>0.4</td>
<td>0.5</td>
<td>0.6</td>
<td>0.7</td>
</tr>
</tbody>
</table>

Pesos de Regresión Estandarizados: (Grupo número 1 - Default model)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Peso</th>
<th>Estimado</th>
<th>Estándar</th>
<th>Varianza</th>
<th>Correlación múltiple</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable 1</td>
<td>0.5</td>
<td>0.6</td>
<td>0.7</td>
<td>0.8</td>
<td>0.9</td>
</tr>
<tr>
<td>Variable 2</td>
<td>0.3</td>
<td>0.4</td>
<td>0.5</td>
<td>0.6</td>
<td>0.7</td>
</tr>
</tbody>
</table>

Varianzas: (Grupo número 1 - Default model)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Varianza</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable 1</td>
<td>0.1</td>
</tr>
<tr>
<td>Variable 2</td>
<td>0.2</td>
</tr>
</tbody>
</table>

Correlaciones múltiples al cuadrado: (Grupo número 1 - Default model)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Correlación múltiple al cuadrado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable 1</td>
<td>0.35</td>
</tr>
<tr>
<td>Variable 2</td>
<td>0.45</td>
</tr>
</tbody>
</table>
Evaluación del Modelo

La evaluación del modelo resulta de primordial importancia debido a que el investigador debe tener certeza del grado en que su modelo hipotético puede ser o no considerado como adecuadamente ajustado para describir los datos de la muestra. Desde luego, en caso de que se verifique cualquier inadecuación, deberá identificar las fuentes de desajuste y llevar a cabo las correcciones más aconsejables. Por lo tanto, la evaluación del modelo debe hacer especial hincapié en cada uno de los parámetros estimados y en el modelo como un todo.

Parámetros Estimados. La revisión de los parámetros estimados deberá poner especial cuidado en a) la posibilidad de dichos parámetros, b) las características de los errores estándar, y c) la significación estadística de los parámetros estimados.

En lo que respecta a la viabilidad de los estimados, será preciso verificar si éstos tiene el signo y el tamaño correctos y si son consistentes con la teoría. Así los parámetros que pueden ser considerados incorrectos son por ejemplo los que exhiben correlaciones mayores a 1.0 y varianzas y covarianzas negativas.

En relación a qué tan apropiados pueden ser los errores estándar (varianzas) que establecen la precisión con que los parámetros fueron estimados, el investigador deberá vigilar que los valores de aquellos se mantengan en un rango apropiado, es decir ni muy bajos ni muy altos. Así, si los errores estándar se aproximan a 0, no será posible definir la prueba estadística de sus parámetros (Byrne, 2010, Bentler, 2005). Sin embargo, cuando son demasiado grandes, se debe interpretar que los parámetros no pueden ser identificados (Jöreskog y Sörbom, 1993).

Finalmente, tratándose de la significación estadística de los parámetros, el criterio clave es la “Razón Crítica” (o Critical Ratio, CR) y da la prueba de que el estimado es diferente a 0. Por lo tanto, con una significatividad de .05, se debe esperar que el resultado sea $>\pm 1.96$ antes de que la hipótesis nula (el estimado es igual a 0) pueda ser rechazada. Todos los parámetros (con la excepción de las varianzas de error) que no sean significativos,

5 No existe un criterio definitivo acerca de qué puede considerarse un error estándar “pequeño” o “grande”, de aquí que debe adoptarse un rango “razonable”.

CAPÍTULO VI
INTRODUCCIÓN AL MODELADO DE ECUACIONES ESTRUCTURALES (MEE) 152
son irrelevantes para el modelo y deberían ser removidos del mismo6 (Byrne, 2010).

A la luz de estas indicaciones, veamos cómo se comportan los estimados presentados en la Tabla 6.1 y que corresponden al ejemplo utilizado para la ilustración. Nótese en primer lugar que tres de los estimados arrojaron correlaciones superiores a 1.0 y si bien éstas no son muy superiores a dicho valor, constituyen indicadores adversos. Asimismo, los tres estimados ("Relacionadopadré", "Amigosantisociales" y "Desacuerdopadres") no demostraron ser estadísticamente significativos (p > .05), por lo tanto debería reconsiderarse su inclusión en el modelo. De los estimados estandarizados, "Conocemadretotal" y "Relacionesmadre" fueron los que mejor se comportaron.

En relación con los errores estándar (varianzas), todos los estimados con excepción de "Conocemadretotal" y "Relacionesmadre" reportaron valores demasiado altos, lo que hace suponer que los parámetros no fueron debidamente identificados.

El modelo como un todo. Para evaluar el modelo de manera global, deberá considerarse cuatro aspectos básicos: en primer lugar, el proceso de ajuste, propiamente dicho, el tema de la significación estadística de la bondad de ajuste y el proceso de estimación. Veamos brevemente cada uno de ellos.

En relación con el proceso de ajuste del modelo, tal como se comentó anteriormente, el investigador plantea la hipótesis nula señalando que "el modelo tiene un buen ajuste" y en consecuencia, el propósito es no rechazarla. Para decidir si es posible o no rechazar la hipótesis nula, debe calcularse la X2, tomando en consideración los grados de libertad, obtenidos en base a la diferencia entre el número de varianzas más covarianzas y el número de parámetros a ser estimados por el modelo. Ya hemos señalado que el valor de Chi cuadrado de nuestro ejemplo es muy alto y que por lo tanto, podríamos concluir que, así como fuera presentado, no tiene un buen ajuste.

Sobre la significación estadística, cabe hacer notar que ésta se encuentra relacionada con la determinación de los grados de libertad para el cálculo de la Chi cuadrado, los mismos que se derivan del número de elementos verificados en la matriz de

6 Muchas veces, la falta de significatividad de los estimados puede ser un indicador de una muestra de insuficiente tamaño.
varianza-covarianza, así como del número de parámetros que deberán ser estimados. La diferencia entre ambas cuantificaciones, permite obtener los grados de libertad. Adicionalmente debe insistirse nuevamente que, a diferencia de otros cálculos de la Chi cuadrado, los resultados significativos constituyen un indicador de la falta de ajuste del modelo.

La estadística de la bondad de ajuste del modelo se resume en los datos presentados en las tablas siguientes, presentadas a continuación. Revisemos lo que se comunica cada conjunto de estadísticos, siguiendo la lógica adoptada por Byrne, (2010).

\textbf{Tabla 6.2.}

\textbf{Indicadores de Mínima Discrepancia CMIN}

\begin{table}[h]
\begin{center}
\begin{tabular}{|c|c|c|}
\hline
 \textbf{Indicador} & \textbf{Valor} & \textbf{Interpretación} \\
\hline
 CMIN & 5.67 & Adequado \\
\hline
\end{tabular}
\end{center}
\end{table}

Por NPAR debe entenderse, en la Tabla 6.2, el “Número de parámetros”, CMIN significa “Mínima Discrepancia” y equivale al estadístico Chi cuadrado (X^2). DF son los grados de libertad y P es la probabilidad. La tabla nos dice entonces que una $X^2 = 65.070$ con 9 grados de libertad (obtenidos en base a 12 parámetros), arroja una probabilidad de .0001. Lo que señala como lo hicimos ya notar anteriormente que no puede rechazarse la Ho de la bondad del modelo. Una probabilidad de .0001 significa que la hipótesis que respalda la relación modelada solo representa un evento único que puede ocurrir una vez en mil posibilidades, lo que obliga a que sea rechazada. CMIN/DF es un indicador que se logra dividiendo el valor de la X^2 entre el número de grados de libertad, dato que complementa a la X^2.

La Tabla 6.3 resume un nuevo grupo de indicadores donde destaca la RMR o “Raíz Cuadrada Media Residual” (The Root Mean Square Residual). La RMR estandarizada representa el valor promedio de los residuos estandarizados. Se presenta con valores que van de 0 a 1 y en un modelo bien ajustado se espera .05 o menos. Sin embargo, el presentado en la tabla corresponde al valor no estandarizado.
El GFI o "Goodness of fit Index" (Indice Bondad de Ajuste) y el AGFI o Adjusted Goodness of fit Index (Indice de Bondad de Ajuste Corregido) son medidas de la cantidad de varianza y covarianza en la matriz. Ambos indicadores comparan el modelo hipotetizado, con la ausencia del mismo. Los rangos de ambos índices van de 0 a 1 y los valores ideales son los que se aproximan a 1.0 y pueden ser negativos. Nuestros valores de la tabla son .847 y .644 respectivamente, dos datos relativamente buenos.

El último indicador de esta tabla el PGFI o " Parsimony Goodness of fit Index" (Parisonia del Índice de Bondad de Ajuste), evalúa la complejidad del modelo y debería mostrar índices más bajos que los valores usualmente asumidos como aceptables bajo otros indicadores de ajuste. Por lo tanto el valor arrojado por el modelo que sirve de ejemplo (0.363) parecería consistente con lo esperado.

En este grupo de indicadores presentados en la Tabla 6.4, podemos identificar el NFI o "Normed Fit Index" (Índice de Ajuste Normado), el RFI o "Relative Fit index" (Índice de Ajuste Relativo), el IFI o "Incremental Index Fit" (Índice de Ajuste
Incremental), el TLI o Tucker-Lewis Index (Índice Tucker-Lewis) y el CFI o “Comparative Fit Index” (Índice de Ajuste Comparativo).

El NFI, que era un indicador de amplio empleo, fue revisado debido a que tendía a subestimar el ajuste en muestras pequeñas. De dicha revisión surgió el CFI. Tanto el NFI como el CFI fueron derivados de la comparación entre el modelo hipotetizado y el modelo “nulo”. Así cada uno mide la covariación completa de los datos y por lo tanto resultados mayores a .90 se consideran indicadores de un buen ajuste del modelo (Bentler, 1992). El valor de CFI obtenido en el modelo ejemplificado fue .504, bajo, según la expectativa de Bentler.

Se espera que los indicadores restantes (RFI, IFI y TLI), deberían comportarse de manera similar, es decir arrojando valores cercanos a 1.0 para que podamos asumir un buen ajuste del modelo.

Tabla 6.5
Indicadores de Ajuste de Parsimonia

Este nuevo conjunto de indicadores (PRATIO, PNFI Y PCFI) dan cuenta también de la parsimonia del modelo. Los valores obtenidos por nuestro modelo utilizado como ejemplo, se encuentran fuera del rango recomendado (lo más próximo a 1.0 como sea posible).

Tabla 6.6
Indicadores de no controlidad NCP

CAPÍTULO VI
INTRODUCCIÓN AL MODELADO DE ECUACIONES ESTRUCTURALES (MEE)

157
NCP o "Noncentrality Parameter" (Parámetro de no Centralidad). Este indicador funciona como una medida de la discrepancia entre la matriz poblacional de covarianza y la matriz de covarianza restringida, postulada por el modelo. Este parámetro corresponde al valor de X^2 menos los grados de libertad. En nuestro ejemplo, correspondería a $X^2-6 = 65.070 - 9 = 56.070$. El intervalo de confianza señala un 90% de exactitud de que el valor poblacional de no centralidad (λ) cae entre 34.109 y 85.518. Steiger (1990) ha establecido que para asumir un adecuado indicador de centralidad, el valor debe encontrarse dentro de los límites del intervalo de confianza. Por lo tanto, nuestro modelo ejemplificado cumple con el criterio.

Tabla 6.7.

<table>
<thead>
<tr>
<th>Indicadores de Función de Discrepancia Mínima FMIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Denominador</td>
</tr>
<tr>
<td>1.000</td>
</tr>
</tbody>
</table>

El mismo criterio de valoración debe seguirse para el caso de FMIN o "Minimum Discrepancy Function" (Función de Discrepancia Mínima) y PO o "Population Discrepancy" (Discrepancia Poblacional). Nótese que ambos indicadores se encuentran comprendidos en el intervalo de confianza.

Tabla 6.8.

<table>
<thead>
<tr>
<th>Indicadores de Error de Aproximación Raíz Media Cuadrada RMSEA</th>
</tr>
</thead>
<tbody>
<tr>
<td>RMSEA</td>
</tr>
</tbody>
</table>

La Tabla 6.8 presenta los indicadores RMSEA o "Root Mean Square Error of Approximation" (Error de Aproximación Raíz Media Cuadrada). Si bien tales parámetros fueron desarrollados...
por Steiger y Lind hace más de veinte años (Steiger y Lind, 1980), a decir de Byrne (2010) solo recientemente han sido reconocidos como el criterio que arroja la mejor información sobre la estructura de covarianza de un modelo y agrega:

"El RMSEA toma en cuenta el error de aproximación en la población y pregunta ¿qué tan bien el modelo, con unos valores paramétricos elegidos que son desconocidos aunque óptimos, ajustan la matriz de covarianza poblacional? [...] valores menores a .05 indican un buen ajuste y valores del orden de los .08 señalarían la presencia de errores razonables de aproximación en la población. Otros autores (MacCallum y Cols., en 1996), notaron que valores entre .08 y .10 indican ajustes mediocres y que los que sobrepasan 1.0, indicarían ajustes pobres" (p.80).

MacCallum y Austin (2000), recomiendan el uso de RMSEA por tres razones: en primer lugar, por su sensibilidad, por su generalidad en el logro de conclusiones y porque permite definir intervalos de confianza.

Es importante señalar también que el indicador RMSEA es extremadamente sensible al tamaño de la muestra y a la complejidad del modelo. En efecto, si se cuenta con una muestra pequeña y una gran cantidad de parámetros estimados, el intervalo de confianza puede llegar a ser excesivamente amplio. Por otro lado, si el modelo es demasiado complejo, es decir, si posee un gran número de parámetros, se necesitará una muestra lo suficientemente amplia como para obtener un intervalo de confianza razonablemente estrecho.

En todo caso, el RMSEA es por hoy, el indicador más ampliamente utilizado por los investigadores que buscan criterios rigurosos para evaluar el ajuste del modelo y en todo caso, si se utilizan otros estadísticos, éstos normalmente acompañan o complementan la información prodigada por RMSEA.

AIC o "Akaike’s Information Criteria" (Criterio de Información Akaike) y CAIC o "Consistent Akaike’s Information Criteria" (Criterio Consistente de Información Akaike) constituyen también indicadores de la parsimonia del modelo. Estos estadísticos que comparten el mismo marco conceptual, se utilizan para comparar dos o más modelos y reflejan la medida
en que los parámetros estimados de la muestra original validan de manera cruzada (cross-validate) muestras futuras (Bandalos, 1993). Los valores pequeños representan un mejor ajuste del modelo.

Tabla 6.9.
Indicador de Criterio de Información Akaike AIC

El BCC o “Browne-Cudeck Criterion” (Criterio Browne-Cudeck), así como el BIC o “Bayes Information Criteria” operan de la misma manera que AIC y CAIC.

Tabla 6.10.
Indicador de Validación Cruzada Esperada ECVI

El ECVI o “Expected Cross-validation Index” (Índice de Validación Cruzada Esperada), permite evaluar en una muestra, la probabilidad de que el modelo se valide de manera cruzada con otras muestras de similar tamaño pero de la misma población. Da cuenta de la diferencia entre la matriz de covarianza analizada y la matriz de covarianza esperada que podría obtenerse de otra muestra de tamaño equivalente. El modelo que tiene el ECVI más pequeño, muestra mayor potencial para la replicación (Byrne, 2010).

En la evaluación de nuestro ejemplo, con este indicador, debemos comparar el valor ECVI (ECVI = .891) con los valores provenientes de los modelos saturado e independencia, y como ECVI no es menor al valor del Modelo saturado, no podemos concluir acerca
de la bondad de ajuste del modelo puesto a prueba. Asimismo, la tabla muestra la existencia de un intervalo de confianza que permite afinar la precisión del indicador; nótese que el rango está determinado entre 0.671 y 1.185 y nuestro valor de ECVI (.891) se encuentra contenido en el intervalo. Esta podría ser una buena señal siempre y cuando dicho valor represente el menor, comparado con los modelos saturado e independencia.

Con respecto a MECVI debe decirse que su tratamiento es idéntico al BCC.

Tabla 6.11.
Indicador HOELTER

Finalmente, está el HOELTER cuyo interés recae principalmente en las características de la muestra más que en el ajuste del modelo mismo. Busca independizarse del índice del tamaño de la muestra o más bien sugerir un tamaño de muestra que sea suficiente para lograr un ajuste adecuado para la prueba X^2. Hoelter propuso que un valor superior a 200 podría ser considerado como indicador de un modelo respaldado por una muestra suficiente. El indicador referido nos dice claramente que el tamaño de la muestra para la prueba de nuestro modelo del ejemplo, es claramente insuficiente.

La Tabla 6.12 presenta un resumen de los indicadores descritos para evaluar globalmente el modelo, con sus respectivos criterios de juste.

Una vez revisados los diferentes medios de que se dispone para llevar a cabo la evaluación del modelo como un todo, la pregunta que seguramente se está formulando el lector es: “bueno y ahora, ¿qué indicador tomo para evaluar mi modelo? La respuesta dependerá, claro, de qué aspecto global del modelo se desea evaluar y sobre todo considerando qué aspecto del modelo que se propone se ve como potencialmente problemático: su complejidad o la necesidad de parsimonia, el tamaño de su muestra, si se sospecha o si existe evidencia de violaciones
a los supuestos básicos de normalidad, el procedimiento de estimación, validación cruzada, etc.

<table>
<thead>
<tr>
<th>Indicador</th>
<th>Criterios de Ajuste</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMIN (X²)</td>
<td>El valor obtenido debe corresponder a una X² baja con pocos grados de libertad y una probabilidad superior a .05.</td>
</tr>
<tr>
<td>RMR</td>
<td>Para RMR, se debería esperar un valor de .05 o menor</td>
</tr>
<tr>
<td>GFI</td>
<td>Para el caso de GFI, los valores ideales de ajuste se deben aproximar a 1.0</td>
</tr>
<tr>
<td>PGFI</td>
<td>Para PGFI, se debería esperar valores menores a .05</td>
</tr>
<tr>
<td>NFI</td>
<td>Para todos estos indicadores los valores ideales deben ser superiores a .90, preferentemente 1.0</td>
</tr>
<tr>
<td>IFI</td>
<td></td>
</tr>
<tr>
<td>TLI</td>
<td></td>
</tr>
<tr>
<td>CFI</td>
<td></td>
</tr>
<tr>
<td>PRATIO</td>
<td></td>
</tr>
<tr>
<td>PNFI</td>
<td>Se debería esperar valores lo más próximos a 1.0 como sea posible.</td>
</tr>
<tr>
<td>PCFI</td>
<td></td>
</tr>
<tr>
<td>NCP</td>
<td>El valor obtenido debe caer dentro de los límites del intervalo de confianza (LO – HI).</td>
</tr>
<tr>
<td>FMIN</td>
<td>El valor obtenido debe caer dentro de los límites del intervalo de confianza (LO – HI).</td>
</tr>
<tr>
<td>RMSEA</td>
<td>Se debería esperar valores menores a .05</td>
</tr>
<tr>
<td>AIC</td>
<td>Estos indicadores miden la parsimonia del modelo (el Principio de Parsimonia establece que la solución más simple es siempre la mejor) a través de la validación cruzada. Los valores pequeños representan mejor el buen ajuste del modelo.</td>
</tr>
<tr>
<td>BIC</td>
<td></td>
</tr>
<tr>
<td>CAIC</td>
<td></td>
</tr>
<tr>
<td>ECVI</td>
<td>ECVI mide también la parsimonia del modelo a través de la validación cruzada. Los valores pequeños representan mejor el buen ajuste del modelo.</td>
</tr>
<tr>
<td>HOELTER</td>
<td>Mide la adecuación del modelo a la muestra. Los valores superiores a 200 son indicativos de un modelo respaldado por una muestra de tamaño adecuado.</td>
</tr>
</tbody>
</table>

Ahora volvamos sobre nuestro ejemplo y reconsideremoslo a la luz de los indicadores de ajuste de mayor relevancia. En primer lugar, el indicador de Mínima Discrepancia nos dice que una X² = 65.070 con 9 grados de libertad (obtenidos en base a 12 parámetros), arroja una probabilidad de .0001, lo que señala como lo hicimos ya notar anteriormente que no puede rechazarse la Ho de la bondad del modelo.
En segundo lugar, el GFI o Índice de Bondad de Ajuste y el AGFI o Índice de Bondad de Ajuste Corregido, miden la cantidad de varianza y covarianza en la matriz. Los rangos de ambos índices van de 0 a 1 y los valores ideales son los que se aproximan a 1.0 y pueden ser negativos. Nuestros valores de la tabla son .847 y .644 respectivamente, dos datos relativamente buenos. Asimismo, el PCFI o el Índice de Parsimonia de Bondad de Ajuste (0.363) parecería consistente con lo esperado.

Los indicadores RMSEA o Error de Aproximación Raíz Media Cuadrada, para nuestro modelo exceden a los valores que señalan un adecuado ajuste (.250), recuérdese que el indicador exige valores de .08 o menores como señales de buen ajuste, lo que hace pensar que pese a los indicadores anteriormente mencionados, el modelo tendría un evidente problema de ajuste.

En consecuencia, parecería pertinente reformular el modelo.

Características del Modelo Reformulado

Debido a que, por lo visto, un solo factor tuvo limitaciones evidentes para explicar las variables del modelo, se intentó verificar si dos factores podrían abordar mejor las relaciones intrafamiliares. De esta manera, el nuevo modelo tuvo la siguiente apariencia:

![Diagrama del modelo reformulado](image.png)

Figura 6.17. Reformulación gráfica del modelo, incorporando un factor adicional
Parámetros Estimados del Modelo Reformulado

A continuación se presenta el comportamiento de los estimados en el nuevo modelo propuesto:

Tabla 6.12.
Listado de estimados estandarizados y no estandarizados obtenidos para cada variable, junto con varianzas y correlaciones múltiples del nuevo modelo

<table>
<thead>
<tr>
<th>Pesos de Regresión:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimado</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>0.1</td>
</tr>
<tr>
<td>0.5</td>
</tr>
<tr>
<td>0.9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pesos de Regresión Estandarizados:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimado</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>0.1</td>
</tr>
<tr>
<td>0.5</td>
</tr>
<tr>
<td>0.9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Covarianzas:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimado</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>0.1</td>
</tr>
<tr>
<td>0.5</td>
</tr>
<tr>
<td>0.9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Correlaciones:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimado</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>0.1</td>
</tr>
<tr>
<td>0.5</td>
</tr>
<tr>
<td>0.9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Varianzas:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimado</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>0.1</td>
</tr>
<tr>
<td>0.5</td>
</tr>
<tr>
<td>0.9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Correlaciones Múltiples al Cuadrado:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimado</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>0.1</td>
</tr>
<tr>
<td>0.5</td>
</tr>
<tr>
<td>0.9</td>
</tr>
</tbody>
</table>
Tal como puede advertirse en la Tabla 6.12, el nuevo modelo eliminó dos variables observables (Amigosantisociales y Desacuerdopadres) e incorporó un factor latente (Armonía Escolar). Ahora el modelo asume que un adecuado desempeño en la escuela que se traduce en buenas relaciones entre padres e hijos está principalmente relacionado de manera causal con el papel que juega el padre. El modelo propone, por otra parte, que la armonía familiar explica el comportamiento de la madre; así, se presume una división de roles en la determinación de la armonía en las relaciones entre padres e hijos.

Los pesos de regresión no estandarizados presentan razones críticas significativas y los estimados estandarizados presentan correlaciones no menores a .627, señalando fuertes relaciones entre los factores latentes y las variables observables. Por otro lado, la correlación entre ambos factores latentes señala una relación relativamente fuerte entre ambas (.389). Las varianzas se muestran significativas, con excepción de dos de ellas y las correlaciones múltiples al cuadrado (R^2) señalan que los dos factores latentes explican porciones importantes de varianza en las variables observables (ninguna menos del 39 por ciento). En conclusión podríamos decir que el modelo reformulado arroja estimados mucho más consistentes que los observados en el primer intento.

Resumen de Ajuste del Modelo Reformulado

Veamos a continuación los indicadores de ajuste global del modelo reformulado:

$$C_{MIN}$$

Baseline Comparisons
Como puede verificarse en las tablas anteriores, todos los indicadores enlistados arrojaron valores de ajuste adecuados: CMIN nos informa una \(X^2 \) de 2.316 con 2 grados de libertad, y una probabilidad de .314 que nos permite aceptar la hipótesis de buen ajuste del modelo. Asimismo, los indicadores NFI, RFI, IFI, TLI y CFI, arrojaron valores de .972, .915, .996, .987 y .996 respectivamente, todos muy próximos a 1.0.

Por otra parte, los valores de NCP y FMIN claramente caen dentro los márgenes del intervalo de confianza al 90 por ciento de exactitud. Adicionalmente y lo más importante, el indicador RMSEA exhibe un valor de .040, inferior al .05 necesario para postular un buen ajuste del modelo. Finalmente, el indicador HOELTER que ofrece un valor de 259 para .05 y de 398 para .01, nos dice que el modelo reformulado se encuentra ampliamente respaldado por el tamaño de la muestra empleado en el estudio.

Por lo tanto, ya que contamos con el respaldo de los estimados y de adecuados indicadores de ajuste, podríamos considerar que el modelo reformulado, desde la lógica estadística, proporciona un buen ajuste de los datos. Teóricamente, el modelo ha recibido también el respaldo para asumir que las buenas relaciones entre padres e hijos que se traducen en convivencia en armonía, puede
entenderse a partir de dos dimensiones ortogonales (factores latentes), una que hace referencia a la armonía entre padres e hijos en asuntos relacionados con la escuela y la otra que gobierna las relaciones en el ámbito del hogar. Asimismo, en la primera, la percepción del joven acerca de los roles del padre resulta central, en cambio en la segunda, el actor central resulta ser la madre. El modelo respalda, por lo tanto, una clara división de roles en la contribución de las relaciones armoniosas entre padres e hijos.
El Análisis Factorial Confirmatorio (AFC) se ha convertido en los últimos años, en uno de los procedimientos más utilizados en la investigación en ciencias del comportamiento. El AFC es una de las múltiples aplicaciones de los Modelos de Ecuaciones Estructurales (MEE), cuyo propósito es, entre otros, la prueba de la validez factorial de un instrumento de medida ya consolidado, a partir del análisis de las relaciones entre un conjunto de indicadores o variables observadas y uno o más factores o variables latentes. Los indicadores pueden ser, por ejemplo, los ítems de una test, las puntuaciones obtenidas por los sujetos en distintas escalas o los resultados provenientes de instrumentos de observación conductual (Arias, 2008). Por estas propiedades se considera al AFC el modelo de medida del MEE.

La prueba de la validez factorial de los puntajes de los instrumentos de medida puede llevarse a cabo tanto con modelos de primer orden como de segundo orden. Los modelos de primer orden son aquellos que establecen relaciones entre constructos latentes (no observables) y variables observables, en las que éstas últimas son consideradas variables endógenas (dependientes), mientras que los primeros son exógenos (o independientes). En el AFC de segundo orden, los constructos que inicialmente operaban
como latentes exógenos, pasan a ser variables endógenas de otras constructos latentes de orden superior que pasan a operar a la manera de exógenas. La diferencia básica estriba en que en el AFC de segundo orden, las correlaciones entre factores son sustituidas por saturaciones en una nueva variable exógena de orden superior que engloba a los constructos que operaban en el AFC de primer orden, como constructos exógenos. Los diagramas que se presentan a continuación, en la figura 7.1, ilustran esta distinción.

Figura 7.1. Distinciones conceptuales entre el AFC de primer y segundo orden

Similitudes y diferencias entre AFE y AFC

De la misma manera que el Análisis Factorial Exploratorio (AFE)\(^1\), el propósito del AFC es identificar factores latentes que expliquen las variaciones y covarianzas de un conjunto de indicadores. Ambos tipos de análisis están basados en el modelo de los factores comunes, no obstante, mientras que el AFE puede considerarse como un procedimiento descriptivo, con el AFC, el investigador está obligado a especificar de inicio los elementos del modelo, lo que supone una propuesta conceptual y teórica bien fundamentada que guíe el análisis desde la perspectiva inferencial (Brown, 2006). Esta es la razón por la que el AFC se suele usar en la fase final de la construcción y validación de

\(^1\) Véase Capítulo V de este libro.
sistemas de medida, de manera complementaria al AFE y en la confirmación de modelos teóricos.

Otra diferencia entre el AFE y el AFC que vale la pena destacar es que, el análisis del primero procede desde una óptica completamente estandarizada que se expresa en una matriz de correlaciones con una varianza factorial igual a 1.0 en la diagonal y una carga factorial que se interpreta como coeficientes de correlación. En el AFC, en cambio, se tiene una matriz de varianza - covarianza que permite obtener soluciones no estandarizadas, donde la diagonal contiene las varianzas y fuera de ella se identifican las covarianzas. De esta manera, el AFC arroja tanto soluciones estandarizadas como no estandarizadas. Los investigadores, por lo general prefieren reportar soluciones no estandarizadas debido a que los datos que manejan provienen precisamente de variables no estandarizadas.

Otra distinción relevante se destaca en las características de las matrices de carga de ambos tipos de análisis factorial. En el AFE cada indicador carga en todos los factores. Si la solución no satisface, se procede con la rotación de los factores para optimizar la interpretabilidad de la carga factorial. En el caso del AFC, la rotación de factores no se aplica debido a que todas las cargas de los indicadores se les asigna el valor 0. En el ejemplo expresado en la Tabla 7.1 (Brown, 2010), se observa la diferencia. Nótese que el AFC define tan solo 8 cargas factoriales en lugar de las 16 propuestas por el AFE.

En la aproximación factorial exploratoria se tienen los datos y se busca encontrar un modelo que se ajuste a ellos. Por lo tanto, se especifican varios modelos alternativos con la esperanza de encontrar alguno que explique los datos y que tenga además un soporte teórico. En el caso de los modelos factoriales confirmatorios, se busca probar estadísticamente la significación de un modelo factorial hipotético para ver si los datos confirman o no el modelo. Por lo tanto, en el AFC, el investigador define un número determinado de factores, verifica cuáles de ellos se encuentran correlacionados y qué indicadores observables miden dichos factores. En el AFE, se explora la cantidad de factores existentes, verifica si dichos factores se encuentran o no correlacionados y qué variables observables miden mejor cada factor. En el AFC el investigador especifica de antemano el modelo teórico mientras que para el AFE éste no es un requisito.
Tabla 7.1.
Comparación de la estructura de las matrices de carga factorial desplegadas por los AFC y AFE, respectivamente

A. AFC (Correlación factorial = .6224)

<table>
<thead>
<tr>
<th>Factor</th>
<th>Crímenes a la Propiedad</th>
<th>Crímenes violentos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y1</td>
<td>.7996</td>
<td>.0000</td>
</tr>
<tr>
<td>Y2</td>
<td>.6451</td>
<td>.0000</td>
</tr>
<tr>
<td>Y3</td>
<td>.5699</td>
<td>.0000</td>
</tr>
<tr>
<td>Y4</td>
<td>.4753</td>
<td>.0000</td>
</tr>
<tr>
<td>Y5</td>
<td>.0000</td>
<td>.7315</td>
</tr>
<tr>
<td>Y6</td>
<td>.0000</td>
<td>.5891</td>
</tr>
<tr>
<td>Y7</td>
<td>.0000</td>
<td>.7446</td>
</tr>
<tr>
<td>Y8</td>
<td>.0000</td>
<td>.5603</td>
</tr>
</tbody>
</table>

B. AFE (Correlación factorial con rotación Oblicua = .5722)

<table>
<thead>
<tr>
<th>Factor</th>
<th>Crímenes a la Propiedad</th>
<th>Crímenes violentos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y1</td>
<td>.9197</td>
<td>-.0958</td>
</tr>
<tr>
<td>Y2</td>
<td>.5422</td>
<td>.1045</td>
</tr>
<tr>
<td>Y3</td>
<td>.5300</td>
<td>.0372</td>
</tr>
<tr>
<td>Y4</td>
<td>.4494</td>
<td>.0103</td>
</tr>
<tr>
<td>Y5</td>
<td>.0434</td>
<td>.7043</td>
</tr>
<tr>
<td>Y6</td>
<td>-.1178</td>
<td>.6999</td>
</tr>
<tr>
<td>Y7</td>
<td>.1727</td>
<td>.6106</td>
</tr>
<tr>
<td>Y8</td>
<td>.0264</td>
<td>.5758</td>
</tr>
</tbody>
</table>

Un Ejemplo de Aplicación del AFC de Primer Orden

A continuación ilustraremos la prueba de la validez factorial de una escala diseñada para medir los estilos cognitivos de mujeres emprendedoras que promueven iniciativas económicas. Dicho instrumento fue aplicado por Roth, Carmona y Velasco (2009) como una variación del Inventario original de Estilos Cognitivos (Cognitive Style Index, CSI) desarrollado por Allinson y Hayes (1996). Las características de la muestra boliviana recomendaron ajustes importantes en el instrumento para obtener confiabilidad y validez aceptables de la medida. Así la escala (una de tipo Likert con cuatro opciones de respuesta 1 = Nunca y 4 = Siempre) que originalmente contaba con 38 ítems, fue aplicada con 18 ítems, 8 para medir el factor "estilo analítico" y 10 para medir el "estilo intuítivo". El instrumento modificado obtuvo, mediante los procedimientos convencionales, un coeficiente de confiabilidad relativamente aceptable (Alfa de Crombach = .7527). La validez factorial empleando el método de extracción de componentes principales y la rotación con el método de normalización Varimax con Kaiser, confirmó los 18 ítems en
condiciones aceptables (ninguna correlación tuvo valores menores a .323), confirmando la estructura bifactorial de la escala. Con estos dos factores (estilo intuitivo y estilo analítico) la escala alcanzó a explicar el 39.598 por ciento de la varianza total. En consecuencia, partiendo del instrumento original, se derivó una versión adaptada a la población local, modificada, simplificada, confiable y válida para medir estilos cognitivos (véase Tabla 7.2).

La escala fue aplicada a una muestra de 200 mujeres microempresarias exitosas, residentes de dos centros urbanos de Bolivia. La muestra fue derivada de la base de datos de una organización no gubernamental internacional de asistencia técnica y financiera a mujeres empresarias que por su condición de exclusión socioeconómica tienen acceso limitado al sistema financiero regulado. El criterio de elección utilizado fue el número de ciclos de crédito completados, es decir el número de veces que la empresaria habiendo adquirido un crédito, completó su devolución de manera satisfactoria. Este fue considerado un criterio para definir el éxito empresarial, toda vez que sólo quienes persisten en la demanda del crédito lo hacen porque su actividad económica se lo permite. Así, sólo formaron parte del estudio las mujeres que habían completado siete o más ciclos crediticios. La muestra incluyó empresarias de entre los 20 y los 70 años de edad.

Tabla 7.2.
La escala utilizada para medir los estilos cognitivos (Roth, Carmona y Velasco, 2009).

<table>
<thead>
<tr>
<th>Inventario de Estilos Cognitivos (IEC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AN1. Para solucionar un problema tengo que pensar en cada detalle (analítica)</td>
</tr>
<tr>
<td>AN2. Me va mejor cuando trabajo paso por paso (analítica)</td>
</tr>
<tr>
<td>AN3. Me gusta trabajar con gente que piensa en todos los detalles (analítica)</td>
</tr>
<tr>
<td>AN4. Sigo las reglas y normas de mi trabajo (analítica)</td>
</tr>
<tr>
<td>IN1. Prefiero no ser tan ordenado en mi trabajo (Intuitiva)</td>
</tr>
<tr>
<td>AN5. Si tengo tiempo prefiero mirar los problemas desde diferentes puntos de vista (analítica)</td>
</tr>
<tr>
<td>AN6. Entiendo mejor un problema cuando pienso en todo, parte por parte (analítica)</td>
</tr>
<tr>
<td>IN2. No tengo tiempo para tomar decisiones revisando todo parte por parte (intuitiva)</td>
</tr>
<tr>
<td>AN7. Me fijo en los detalles antes de llegar a una conclusión (analítica)</td>
</tr>
</tbody>
</table>
El Modelo Hipotético

El Análisis Factorial Confirmatorio (AFC) plantea como hipótesis a priori, que las respuestas al Inventario de Estilos Cognitivos (IEC) pueden ser explicadas a través de dos factores: Estilo Analítico y Estilo Intuitivo. Asimismo, los diferentes ítems del Inventario que miden “Estilo Analítico”, registran cargas con valores diferentes a cero, mientras que los ítems que no miden dicho factor cargan cero. Lo mismo se postula para el factor “Estilo Cognitivo Intuitivo”. Se hipotetiza también que ambos factores se correlacionan negativamente. La Figura 7.2 ilustra el modelo en consideración.

Con el propósito de preparar el análisis, deberá especificarse de antemano las características del mismo y para ello, deberá requerirse en “View” (Ver) el cuadro de diálogo “Analysis Properties” (Propiedades de Análisis) escogiéndose la opción “Output” (Productos). De entre las opciones de Output, para nuestros propósitos, requeriremos únicamente los “Estimados Estandarizados” (Estandardized Estimates) (complementariamente a los no estandarizados que se ofrezcan por defecto) y la “Modificación de Índices” (Modification Indices) especificando un umbral de 10, en lugar de 4 que se ofrece por defecto. Finalmente, requeriremos también que AMOS lleve a cabo la prueba de normalidad y que reporte los datos atípicos (véase Figura 7.3).

Los índices de Modificación (MI, en su sigla en inglés), se entienden como una X^2 con un solo grado de libertad y constituye un indicador adicional del grado de propiedad con que se describe un modelo. Jöreskog y Sörbom (1993) sugirieron que los MI deberían ser sustantivamente significativos, lo mismo que el EPC, antes de que el investigador considere la posibilidad de modificar el modelo. Junto con el MI se presenta el Parámetro de Cambio Esperado (ECP, en su sigla en inglés) y representa el cambio esperado para cada parámetro fijo del modelo.
Figura 7.2. Modelo hipotético del Inventario de Estilos Cognitivos
Figura 7.3. Cuadro de diálogo del AMOS para definir las propiedades de análisis que permite establecer los productos arrojados por dicho análisis

A continuación, se procederá en primer lugar examinando el resumen del modelo, la evaluación de la normalidad más los casos atípicos, los indicadores de ajuste global y la Modificación de los índices. Para ello, presiónese sobre el ícono "View Text" (Ver Texto), en seguida AMOS desplegará la información solicitada (véase Figura 7.4).

Nótese en el cuadro exhibido por la Figura 7.4, que el valor de la X^2 es de 410.849 con 134 grados de libertad y una probabilidad de .000. Adviértase también la leyenda "Minimum was Achieved" (Mínimo Logrado). Estos indicadores nos dan a conocer que el modelo fue capaz de estimar exitosamente todos sus parámetros.

En segundo término y con el propósito de establecer si el modelo se ajusta a los supuestos estadísticos básicos que autoricen el análisis, debe evaluarse la normalidad multivariada de sus
datos. Particular atención debe prestarse al comportamiento de la curtosis. Las distribuciones excesivamente leptocúrticas dificultan la interpretación, al extremo que debe recoméndarse la consideración de análisis alternativos no disponibles en AMOS.

Figura 7.4. Cuadro de diálogo de AMOS que despliega los resultados requeridos a través de la función de "Propiedades de Análisis"

En todo caso, West, Finch y Curran (1995), sugirieron que valores de curtosis iguales o superiores a 7.00 serían indicadores de falta de normalidad. Con ese criterio, los datos de nuestro ejemplo no acusan problema de curtosis alguno; sin embargo, éste es un requisito necesario pero insuficiente para asumir la normalidad de nuestros datos. También será preciso escudriñar el comportamiento de la distribución multivariada, la misma que se resume en la última línea de la Figura 7.5 Bentler (2005) recomendó que dicho valor no sobrepase los 5.00; es decir valores multivariados de curtosis superiores a éste, serían indicadores de falta de normalidad de la distribución. Obsérvese que en la Figura 7.5, el valor alcanzado llega a 15.883, sugiriendo la ausencia de normalidad de nuestra muestra.

CAPÍTULO VII
ANÁLISIS FACTORIAL CONFIRMATORIO (AFC)
Figura 7.5. El cuadro expone los indicadores más relevantes para evaluar la normalidad de la distribución, en especial, la distribución multivariada.

Por otra parte, hemos señalado que los casos atípicos, es decir, aquellos que son básicamente diferentes del conjunto de datos de la muestra, pesan de manera desfavorable en contra de una distribución normal. Su inspección es posible partiendo del menú de los “Outputs” (Resultados) mediante el ícono “View Text” (Ver Texto) ubicado en la columna de la izquierda que despliega las funciones del AMOS en el cuadro de texto principal. Elija de dicho menú la opción “Observations Farthest from the Centroid” (Observaciones que se Alejan del Centro), que calcula el cuadrado de la distancia de Mahalanobis (D²), tal como se muestra en la Figura 7.6. Este indicador mide la distancia, en unidades de desviación estándar, entre los datos individuales y la media de la muestra. Un caso atípico debería poseer un valor D² muy diferente de los demás valores D².

Notese que, aparentemente en el caso de nuestro ejemplo, no existiría evidencia de casos atípicos dignos de atención, excepto las observaciones 5, 123, 66 y 35.

CAPÍTULO VII
ANÁLISIS FACTORIAL CONFIRMATORIO (AFC)
Figura 7.6. Cuadro de diálogo que despliega los valores D2 Mahalanobis estableciendo la distancia entre los valores individuales obtenidos y la media muestral

Evaluación de la Bondad de Ajuste

Para llevar a cabo la evaluación del ajuste del modelo, volvamos al menú anterior y elijamos la opción "Model Fit" (Ajuste del Modelo). El programa desplegará las tablas con los indicadores de ajuste ya descritos en detalle en el capítulo anterior; de entre ellos elijamos aquellos que expresen mejor las condiciones de ajuste apropiados para un AFC que busca medir la validez factorial de los puntajes de una prueba. Byrne (2010), recomienda, para este propósito, tomar en cuenta CMIN, NFI, RFI, IFI, TLI y RMSEA. A continuación se exhiben los indicadores correspondientes, en la Tabla 7.3.

Aplicando los criterios expresados en la Tabla 6.12 del capítulo anterior a nuestro ejemplo, tendríamos que una mínima discrepancia (CMIN) equivalente al estadístico Chi cuadrado ($X^2 = 410.849$) con 134 grados de libertad obtenidos en base a
37 parámetros, arroja una probabilidad de .0001, lo que hace imposible rechazar la Ho de un buen ajuste. Por otra parte, un NFI de .627 y el CFI de .708 al ser menores a .90 no pueden ser considerados indicadores de un buen ajuste del modelo. Los valores restantes (RFI, IFI y TLI), tampoco se aproximan a 1.0. Finalmente un RMSEA con valores tan altos como .102 (lejos del .05 requerido) confirma la imposibilidad de concluir un buen ajuste del modelo.

Tabla 7.3.
Indicadores relevantes de ajuste del modelo métrico (Análisis Factorial Confirmatorio)

<table>
<thead>
<tr>
<th>CMIN</th>
<th>Baseline Comparisons</th>
<th>RMSEA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

En consecuencia, como último recurso, deberemos acudir a la Modificación de Índices (IM) para considerar las sugerencias que AMOS realiza para mejorar las condiciones de ajuste. Es importante hacer notar que la Modificación de Índices arroja información sobre covarianzas y sobre los pesos de regresión. En ambos casos, los valores IM excesivamente altos señalan, la presencia de cargas cruzadas en más de un factor. En la Figura 7.7 se puede advertir una serie de sugerencias acerca de covarianzas entre errores (por ejemplo Err1 y Err8), y entre errores y factores (por ejemplo Err12 y Estilo Analítico). Ciertamente, muchas de estas sugerencias no son posibles de tomar en cuenta por razones de falta de conexión directa, por lo que se recomienda identificar en primer lugar si el valor MI se constituye en un
indicador atendible (con cargas muy altas) para posteriormente analizar su conexión. Así, en el ejemplo presentado en la Figura 7.7(A), podríamos identificar dos valores MI relativamente más altos que el resto: Err12 ←→ Estilo Analítico (MI = 29.726) y Err1 ←→ Err8 (MI = 25.733). Debido a que la sugerencia Err12 ←→ Estilo Analítico no tiene sentido, debe considerarse incorporar únicamente la covariación Err1 ←→ Err8 en la reformulación del modelo.
Figura 7.7. Cuadros de diálogo desplegando Modificación de Índices, sugiriendo la inclusión de nuevas relaciones al modelo

Algo similar debe hacerse con respecto a los pesos de regresión. Nótese que en este caso, el valor IM más alto corresponde a IN4 con Estilo Analítico (MI = 29.487), por lo que el programa sugiere que el Factor Estilo Analítico se vincule con el ítem IN4, tal como se advierte en la Figura 7.7(B).

Por lo tanto, corresponde replantear el modelo incorporando las dos sugerencias anotadas; sin embargo, Byrne (2010) sugiere que las adiciones proyectadas se lleven a cabo de manera sucesiva, una cada vez. En otras palabras, debemos proyectar dos reformulaciones del modelo original, la primera para recibir la inclusión de la covariancia err1 - Err8 y la segunda para incorporar las relaciones restantes. Veamos a continuación cómo se comporta la primera reformulación.
Primera Reformulación del Modelo

Para llevar a cabo la primera reformulación (ver Figura 7.8), volvamos al cuadro de diálogo de entrada de AMOS, abramos el modelo original y con la ayuda del ícono para dibujar la covariación (flecha bidireccional), únase Err1 con Err8. Luego active el “Calculate Estimates” (Calcular Estimados) desde la opción “Analyze” (Análisis). A continuación, como se hace siempre para visibilizar los resultados, hágase “click” sobre el ícono “Input Path Diagram (Model Specification)” ubicado en la parte superior media de la columna central del cuadro de diálogo principal, para lograr que el ícono contiguo “View the Output Path Diagram” se active y poder después acceder al “View Text” de opciones de resultados (Outputs), donde verificaremos el nuevo ajuste del modelo con la reformulación ejecutada.

Figura 7.8. Diagrama de la reformulación del modelo original incorporando la covarianza Err1 - Err8
Segunda Reformulación del Modelo

La segunda reformulación del modelo se conduce siguiendo exactamente las mismas actividades ya descritas anteriormente. En este siguiente paso, incorporaremos al modelo la variante sugerida por los MI: vincularemos causalmente IN4 y Estilo Analítico. A continuación se presenta la representación gráfica del modelo con este nuevo ajuste (ver Figura 7.9):

![Diagrama de modelo]

Figura 7.9. Segunda reformulación del modelo original incorporando la relación causal IN4 y Estilo Analítico

CAPÍTULO VII
ANÁLISIS FACTORIAL CONFIRMATORIO (AFC)
Las estadísticas de ajuste del modelo después de esta segunda reformulación, arrojaron los siguientes indicadores: en primer lugar, CMIN = 345.148 con 132 gl, \(p = .000 \), experimentó una leve mejoría con respecto a la primera reformulación, sin embargo, no parece ser suficiente. Por su lado, el indicador CFI, aumentó su valor a .775 un nivel todavía inferior al 1.0 que sería lo deseable. Asimismo el valor de RMSEA = .090 no alcanzó al nivel deseado (.05). La Tabla 7.4 siguiente nos muestra la evolución de los indicadores a lo largo de las reformulaciones del modelo.

<table>
<thead>
<tr>
<th>Indicador</th>
<th>Modelo Original</th>
<th>Primera reformulación</th>
<th>Segunda reformulación</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMIN</td>
<td>410.849 ((p = .000))</td>
<td>380.570 ((p = .000))</td>
<td>345.148 ((p = .000))</td>
</tr>
<tr>
<td>CFI</td>
<td>.708</td>
<td>.739</td>
<td>.775</td>
</tr>
<tr>
<td>RMSEA</td>
<td>.102</td>
<td>.097</td>
<td>.090</td>
</tr>
</tbody>
</table>

De la tabla anterior, resulta evidente que las correcciones sucesivas realizadas al modelo, mejoraron el ajuste general del mismo pero sin conseguir el estadó óptimo deseable. No obstante, resulta pertinente examinar con un poco más de detalle el ítem IN4 que habiéndose postulado su relación con Estilo Intuitivo, cargó de manera cruzada con Estilo Analítico.

Tal como puede observarse en la Tabla 7.5, la carga de este ítem en ambos factores, según el “Critical Ratio” (CR), en los estimados no estandarizados, arrojaron valores estadísticamente significativos (7.109 y 4.447), lo que señala la pertinencia del arreglo en la segunda reformulación a pesar de que la carga en el factor “Estilo Intuitivo” es claramente más intenso. Los indicadores estandarizados confirman el buen comportamiento de los estimados no estandarizados. No obstante, esta carga cruzada es siempre problemática y señala la necesidad de futuros nuevos ajustes en el modelo³.

³ Dichos ajustes no serán llevados a cabo en el presente capítulo pues su desarrollo solo tiene propósitos ilustrativos.

CAPÍTULO VII
ANÁLISIS FACTORIAL CONFIRMATORIO (AFC)
Tabla 7.5.
Valores de razones críticas de los pesos de regresión y sus niveles de significación.

<table>
<thead>
<tr>
<th>Regression Weights:</th>
<th>Estimate</th>
<th>S.E.</th>
<th>C.R.</th>
<th>P</th>
<th>Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>AN4 --- Estilo Analítico</td>
<td>1.729</td>
<td>.327</td>
<td>5.289</td>
<td>***</td>
<td></td>
</tr>
<tr>
<td>AN5 --- Estilo Analítico</td>
<td>.977</td>
<td>.274</td>
<td>3.569</td>
<td>***</td>
<td></td>
</tr>
<tr>
<td>AN6 --- Estilo Analítico</td>
<td>1.211</td>
<td>.246</td>
<td>4.924</td>
<td>***</td>
<td></td>
</tr>
<tr>
<td>AN7 --- Estilo Analítico</td>
<td>1.087</td>
<td>.243</td>
<td>4.467</td>
<td>***</td>
<td></td>
</tr>
<tr>
<td>AN3 --- Estilo Analítico</td>
<td>1.704</td>
<td>.327</td>
<td>5.206</td>
<td>***</td>
<td></td>
</tr>
<tr>
<td>AN1 --- Estilo Analítico</td>
<td>1.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AN2 --- Estilo Analítico</td>
<td>.849</td>
<td>.196</td>
<td>4.338</td>
<td>***</td>
<td></td>
</tr>
<tr>
<td>IN5 --- Estilo Intuitivo</td>
<td>1.165</td>
<td>.168</td>
<td>6.921</td>
<td>***</td>
<td></td>
</tr>
<tr>
<td>IN6 --- Estilo Intuitivo</td>
<td>1.048</td>
<td>.158</td>
<td>6.635</td>
<td>***</td>
<td></td>
</tr>
<tr>
<td>IN7 --- Estilo Intuitivo</td>
<td>.923</td>
<td>.140</td>
<td>6.580</td>
<td>***</td>
<td></td>
</tr>
<tr>
<td>IN8 --- Estilo Intuitivo</td>
<td>.410</td>
<td>.112</td>
<td>3.669</td>
<td>***</td>
<td></td>
</tr>
<tr>
<td>IN9 --- Estilo Intuitivo</td>
<td>.777</td>
<td>.126</td>
<td>6.145</td>
<td>***</td>
<td></td>
</tr>
<tr>
<td>IN10 --- Estilo Intuitivo</td>
<td>.668</td>
<td>.122</td>
<td>5.470</td>
<td>***</td>
<td></td>
</tr>
<tr>
<td>IN1 --- Estilo Intuitivo</td>
<td>1.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IN2 --- Estilo Intuitivo</td>
<td>.977</td>
<td>.137</td>
<td>7.140</td>
<td>***</td>
<td></td>
</tr>
<tr>
<td>IN3 --- Estilo Intuitivo</td>
<td>.949</td>
<td>.148</td>
<td>6.403</td>
<td>***</td>
<td></td>
</tr>
<tr>
<td>AN8 --- Estilo Analítico</td>
<td>.976</td>
<td>.181</td>
<td>5.408</td>
<td>***</td>
<td></td>
</tr>
</tbody>
</table>

Los valores de covarianza para los errores 1 y 8 fueron estadísticamente significativos y ambos factores, tal como predijo el modelo, correlacionaron negativamente, aunque dicha correlación no fuera estadísticamente significativa (véase Tablas 7.7 y 7.8).

En consecuencia, deberíamos decir que la estructura factorial del modelo acusó una notable mejoría a medida que se incorporaron sucesivamente las reformulaciones sugeridas por los MI. No obstante, los estimados y los indicadores de ajuste global comunicaron claramente que debería seguirse trabajando en el
instrumento antes de concluir una óptima estructura factorial, a pesar de haber obtenido un AFE aceptable.

Tablas 7.6 y 7.7.

Tabla 7.6.

<table>
<thead>
<tr>
<th>AN4</th>
<th>Estilo Analítico</th>
<th>0.671</th>
</tr>
</thead>
<tbody>
<tr>
<td>AN5</td>
<td>Estilo Analítico</td>
<td>0.336</td>
</tr>
<tr>
<td>AN6</td>
<td>Estilo Analítico</td>
<td>0.565</td>
</tr>
<tr>
<td>AN7</td>
<td>Estilo Analítico</td>
<td>0.471</td>
</tr>
<tr>
<td>AN3</td>
<td>Estilo Analítico</td>
<td>0.642</td>
</tr>
<tr>
<td>AN1</td>
<td>Estilo Analítico</td>
<td>0.458</td>
</tr>
<tr>
<td>AN2</td>
<td>Estilo Analítico</td>
<td>0.448</td>
</tr>
<tr>
<td>IN5</td>
<td>Estilo Intuitivo</td>
<td>0.650</td>
</tr>
<tr>
<td>IN6</td>
<td>Estilo Intuitivo</td>
<td>0.611</td>
</tr>
<tr>
<td>IN7</td>
<td>Estilo Intuitivo</td>
<td>0.604</td>
</tr>
<tr>
<td>IN8</td>
<td>Estilo Intuitivo</td>
<td>0.297</td>
</tr>
<tr>
<td>IN9</td>
<td>Estilo Intuitivo</td>
<td>0.549</td>
</tr>
<tr>
<td>IN10</td>
<td>Estilo Intuitivo</td>
<td>0.472</td>
</tr>
</tbody>
</table>

Tabla 7.7.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
</table>

Tabla 7.8.

<table>
<thead>
<tr>
<th>Estilo Analítico</th>
<th>Estilo Intuitivo</th>
</tr>
</thead>
</table>

CAPÍTULO VII

ANÁLISIS FACTORIAL CONFIRMATORIO (AFC)
AFC de Segundo Orden

Al análisis confirmatorio de segundo orden se le conoce también como AFC de Orden Superior y su estructura está ejemplificada en la Figura 7.10 (Yung, Thissen y McLeod, 1999).

![Diagrama AFC de Segundo Orden](attachment:image.png)

Figura 7.10. Análisis Factorial Confirmatorio de segundo orden

La estructura de este modelo sugiere una lógica mediacional. Supone que la asociación entre un factor de segundo orden y las variables observables se encuentra completamente mediada por los factores de primer orden. Del modelo presentado en la Figura 7.10 debe quedar claro que los factores A y B median la relación de C, cada uno con tres variables observables.

El análisis mediante AFC de segundo orden procede de manera más o menos similar a la descrita en páginas previas; sin embargo, la incorporación de uno o más factores a manera de variables exógenas, impone una serie de procedimientos adicionales, cuyo tratamiento y descripción caen al margen de los propósitos de este libro. Sin embargo, a los lectores interesados se les recomienda, entre otras obras, la revisión de Byrne (2010), Blunch (2008) y Brown (2006).
A lo largo de los últimos dos capítulos hemos descrito con algún detalle los pormenores del modelado utilizando Ecuaciones Estructurales, tanto con propósitos introductorios como con fines confirmatorios. En el presente capítulo describiremos el uso del MEE para validar modelos teóricos hipotéticos. Como es sabido, todo modelo teórico suele ser construido sobre la base de relaciones causales entre constructos que presuponen explicaciones sobre la naturaleza de un fenómeno. Por lo tanto, el MEE puede ser utilizado también con el propósito de validar empíricamente dichos modelos teóricos.

Ejemplo de un Modelo Multicausal

Desde luego, la validación de un modelo teórico exige la incorporación de constructos cuya validez haya sido a su vez, explorada y confirmada por los procedimientos estadísticos pertinentes. En otras palabras, los elementos constitutivos del modelo deben haber pasado la prueba empírica que señala relaciones inequívocas entre el constructo y sus indicadores empíricos referenciales. Por ejemplo, supongamos que estamos interesados en validar un modelo multicausal de "Protección
Familiar”, conformado por los constructos Autoeficacia Filial, Afrontamiento Familiar, Empatía Familiar, Conducta Prosocial y Satisfacción de Vida. El modelo propone relaciones causales hipotéticas entre:

- Autoeficacia filial y Afrontamiento familiar
- Autoeficacia filial y Empatía familiar
- Autoeficacia Filial y Conducta Prosocial
- Empatía Familiar y Afrontamiento familiar
- Empatía Familiar y Satisfacción de Vida
- Empatía Familiar y Conducta Prosocial
- Afrontamiento Familiar y Satisfacción de Vida
- Afrontamiento Familiar y Depresión
- Conducta Prosocial y Depresión
- Depresión y Satisfacción de Vida

Por lo tanto, se consideran variables independientes o exógenas no observables las siguientes:

- Afrontamiento Familiar
- Autoeficacia Filial
- Empatía Familiar

¹ Lo que significa que altos niveles de Autoeficacia Filial producirían también altas expresiones de Afrontamiento Familiar, Empatía Familiar y Conducta Prosocial.

CAPÍTULO VIII
ANÁLISIS DE LA VALIDEZ DE UN MODELO MULTICAUSAL
• Satisfacción de Vida
• Depresión
• Conducta Prosocial

Mientras que las variables endógenas observables constituyen los items de las escalas que miden los siguientes constructos:

• Afrontamiento Familiar,
• Empatía Familiar,
• Satisfacción de Vida,
• Depresión, y
• Conducta Prosocial.

La Figura 8.1 representa el modelo a través del cual se expresan las relaciones hipotéticas antes descritas, señalando la dirección de la influencia predicha para cada caso. El diagrama expone las variables no observables, sus indicadores observables, incluyendo sus términos de error y parámetros forzados requeridos por el programa AMOS Gráfico para estimar el modelo.

Figura 8.1. Representación gráfica del modelo hipotético propuesto, destacando la direccionalidad de las influencias previstas

Todos estos constructos, desde sus respectivas esferas de influencia probaron, en efecto, jugar un rol de protección y blindaje psicológico en niños, adolescentes y sus familias como reductores de la influencia perniciosa de diferentes factores de riesgo tales como la depresión, la desadaptación social y escolar, el comportamiento antisocial, el abuso de drogas y alcohol, la agresión escolar, la violencia intrafamiliar, etc. Por lo tanto, no parecería fuera de lugar postular hipotéticamente un modelo que intente explicar la satisfacción subjetiva de vida, a partir del relacionamiento de dichos factores de protección, puesto que aquella suele estar siempre presente al producirse éstos.

Validez Confirmatoria de la Porción Métrica del Modelo

Antes de iniciar la prueba de validez del modelo conceptual, será preciso llevar a cabo la validez confirmatoria del componente de medida del modelo. Ello supone confirmar la validez factorial de cada una de las escalas que respaldan el modelo, aplicando los procedimientos descritos en el capítulo VII de este libro. A continuación revisaremos los datos estimados de cada escala y el ajuste global del modelo.

CAPÍTULO VIII
ANÁLISIS DE LA VALIDEZ DE UN MODELO MULTICAUSAL
Autoeficacia Filial. La escala conformada por 10 ítems que mide Autoeficacia Filial ha sido desarrollada por Centro Interuniversitario per la Ricerca Sulla Génesi e Sullo Sviluppo Delle Motivazioni Prosociali e Antisociali, en el que participan las universidades de Roma (La Sapienza), de Padua, Católica del Sagrado Corazón, la Universidad de Nápoles y la Universidad de Florencia, y adaptada y validada en Bolivia por investigadores de la Universidad Católica Boliviana.

Su análisis validatorio se realizó en una muestra de 304 sujetos conformada por jóvenes de entre los 13 y 21 años de edad, con una media de 16.37 y una desviación estándar de 1.525. El análisis exploratorio reportó una distribución muy aproximada a la normal con indicadores “M” (Huber = 42.9757; Tukey Biweight = 43.1315; Hampel = 42.8563; Andrews’ Wave = 43.1330) muy próximos a la media recortada de la distribución (42.6345).

El análisis factorial exploratorio recomendó una estructura monocausal explicando el 50.395 por ciento de la varianza total. El Alfa de Cronbach arrojó una confiabilidad de .890.

El Análisis Factorial Confirmatorio (AFC) ofreció adicionalmente los siguientes resultados con el auxilio del programa AMOS:

Análisis de Estimados:
- Number of distinct sample moments: 55
- Number of distinct parameters to be estimated: 21
- Degrees of freedom (55 - 21): 34

Result (Default model)
- Minimum was achieved
- Chi-square = 82.873
- Degrees of freedom = 34
- Probability level = .000

Si bien estos primeros resultados señalan la imposibilidad de rechazar la hipótesis nula de que el modelo tiene buen ajuste ($X^2 = 82.873$ con 34 gl, $p < .05$), los pesos estandarizados de regresión (ninguno muestra valores por debajo de .583), señalan que las variables implicadas constituyen buenos estimadores de Autoeficacia Filial. Por otro lado, los coeficientes de correlación múltiple al cuadrado (R^2) indican que las variables están explicando una aceptable cantidad de varianza atribuible al factor común.
En relación con el ajuste del modelo, el indicador CMIN (82.873, p = .000) confirma la posibilidad de rechazar la H_0 del buen ajuste del modelo. No obstante, los indicadores de comparación de línea base (NFI = .934; RFI = .912; IFI = .950; TLI = .946 y CFI = .960) al encontrarse todos próximos a 1.0, representan un ajuste aceptable. Esta sentencia está también respaldada por el indicador RMSEA = .069 que señala un ajuste tolerable.

En conclusión, la escala monofactorial que mide Autoeficacia Filial constituye un modelo relativamente válido para efectuar esta medición, presentando buenos estimadores, e indicadores de ajuste global aceptables.

Satisfacción de Vida. La escala conformada por nueve ítems que mide este constructo fue desarrollada en el Instituto de Investigaciones en Ciencias del Comportamiento de la Universidad Católica Boliviana. Su validación se realizó en base a la misma muestra de 304 sujetos conformada por jóvenes de entre los 13 y los 21 años de edad, con una media de 16.37 y una desviación estándar de 1.525. El análisis exploratorio reportó una distribución muy aproximada a la normal aunque
ligeramente leptocúrtica (1.370) aunque con indicadores "M" (Huber = 34.2307; Tukey Biweight = 34.4554; Hampel = 34.2708; Andrews’ Wave = 34.4569) que se aproximan notablemente a la media recortada de la distribución (34.0607).

El análisis factorial exploratorio recomendó una estructura monofactorial explicando el 42.758 por ciento de la varianza total. El Alfa de Cronbach arrojó una confiabilidad de .830.

El Análisis Factorial Confirmatorio (AFC) ofreció adicionalmente los siguientes resultados con el auxilio del programa AMOS:

Análisis de Estimados:

<table>
<thead>
<tr>
<th>Análisis de Estimados:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of distinct sample moments: 45</td>
</tr>
<tr>
<td>Number of distinct parameters to be estimated: 21</td>
</tr>
<tr>
<td>Degrees of freedom (45 - 21): 24</td>
</tr>
</tbody>
</table>

Result (Default model)

<table>
<thead>
<tr>
<th>Minimum was achieved</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chi-square = 39.053</td>
</tr>
<tr>
<td>Degrees of freedom = 24</td>
</tr>
<tr>
<td>Probability level = .182</td>
</tr>
</tbody>
</table>

Figura 8.3. Estructura del modelo métrico de la escala que mide el constructo "Satisfacción de Vida"
De los resultados arrojados, la información disponible en relación con la significación de los parámetros estimativos, podemos decir que los valores de razón crítica (critical ratio o CR) se presentan según lo esperado (CR > 1.96), todos los parámetros individuales no estandarizados y estandarizados exhiben el signo y el tamaño adecuados y son sin excepción significativos. Por lo tanto los pesos de regresión estandarizados indican que los ítems de la prueba constituyen buenos indicadores de "Satisfacción de Vida", mientras que los coeficientes de correlación múltiple al cuadrado muestran que las variables están explicando una aceptable cantidad de varianza atribuible al factor común. Asimismo, las varianzas que exhiben valores bajos, confirman la exactitud de la estimación.

Con relación al ajuste global del modelo, el indicador CMIN arroja un valor de 30.055 con 24 gr, lo que determina una probabilidad de p = .183. Este resultado no permite rechazar la hipótesis nula (H0) del buen ajuste del modelo, reconociéndose de esta manera que disponemos de un modelo bien conformado. Otros indicadores que respaldan esta afirmación son NFI = .968; RFI = .953; IIF = .993; TLI = .990 y CFI = .993, todos muy próximos a 1.0. Asimismo, los indicadores RMSEA = .031 y el GFI = .978, se encuentran dentro de lo óptimo. Finalmente, el RMSEA arrojó un valor de .029.

Por lo tanto, podemos afirmar que la Escala de Satisfacción de Vida constituye un modelo métrico impecable para medir el constructo respectivo, con estimadores en buena forma y con indicadores de ajuste global muy adecuados.

Empatía Familiar. La escala conformada por trece ítem, indicadores de tres variables exógenas (Empatía con el padre, empatía con la madre y empatía con otros familiares) que mide este constructo fue desarrollada en el Instituto de Investigaciones en Ciencias del Comportamiento de la Universidad Católica Boliviana.

La validación de la escala de Empatía Familiar se realizó en base a una muestra de 304 sujetos conformada por jóvenes de entre los 13 y los 21 años de edad, con una edad media de 16.37 y una desviación estándar de 1.525. El análisis exploratorio reportó una distribución claramente normal respaldada por la coincidencia entre el valor de la media recortada (46.4539) y los indicadores M (Huber = 46.3786; Tukey Biweight = 46.3594; Hampel = 46.4338; Andrews’ Wave = 46.3578). Por otra parte, la prueba
de normalidad Kolmogorov-Smirnov no permite rechazar a
hipótesis nula de la normalidad de la distribución (K-S = .045,
p=.200).

El análisis factorial exploratorio recomendó la consideración
de tres factores, (Empatía con el padre, empatía con la madre
y empatía con la familia), explicando el 62.479 por ciento de la
varianza total. El Alfa de Cronbach arrojó una confiabilidad de
.842

El Análisis Factorial Confirmatorio (AFC) arrojó,
complementariamente, los siguientes resultados:

Number of distinct sample moments: 91
Number of distinct parameters to be estimated: 35
Degrees of freedom (91 - 35): 56

Result (Default model)
Minimum was achieved
Chi-square = 91.313
Degrees of freedom = 56
Probability level = .002

Figura 8.4. Estructura del modelo métrico de la escala que mide el constructo "Empatía
Familiar"
El comportamiento de los estimados del modelo no mostró problemas de importancia. Los pesos de regresión, no estandarizados como estandarizados ofrecen un buen panorama, todos son significativos, indicando que el instrumento arroja adecuados indicadores de Empatía Familiar y que explican también adecuadamente la varianza de los factores. Asimismo, el tamaño de las varianzas (< .210) nos hacen pensar en estimaciones precisas para el modelo.

En relación con el ajuste general del modelo, podemos decir que si bien no fue posible aceptar la hipótesis de la bondad de ajuste, pues el indicador CMIN es todavía alto arrojando una p < .05, los valores de NFI = .944; RFI = .923; IFI = .978; TLI = .969 y CFI = .977, ofrecen un muy buen aspecto al situarse todos muy próximos a 1.0. Asimismo, el RMSEA arrojó un valor muy adecuado de .046.

En suma, la escala que el modelo teórico utiliza para medir empatía familiar, parecería estar en buenas condiciones métricas.

Afrentamiento Familiar. La escala que se encuentra conformada por trece ítems, que miden dos variables exógenas (Afrentamiento Interno y Afrentamiento Externo) fue desarrollada en el Instituto de Investigaciones en Ciencias del Comportamiento de la Universidad Católica Boliviana.

El análisis exploratorio reportó una distribución normal. El valor de la media recortada (65.4868) prácticamente coincide con el de los indicadores M (Huber = 65.7088; Tukey Biweight = 65.5579; Hampel = 65.5469; Andrews’ Wave = 65.5541). Por otra parte, la prueba de normalidad Kolmogorov-Smirnov no permite rechazar a hipótesis nula de la normalidad de la distribución (K-S = .045, p = .200).

El análisis factorial exploratorio recomendó la consideración de dos factores, (Afrentamiento interno y externo), explicando el 34.504 por ciento de la varianza total. El Alfa de Cronbach arrojó una confiabilidad de .831

El Análisis Factorial Confirmatorio (AFC) arrojó, los siguientes resultados:

Number of distinct sample moments:	91
Number of distinct parameters to be estimated:	29
Degrees of freedom (91 - 29):	62

CAPÍTULO VIII
ANÁLISIS DE LA VALIDEZ DE UN MODELO MULTICAUSAL 197
Los estimados del modelo muestran un relativamente buen comportamiento de los indicadores básicos: los valores de razón crítica (o CR) se presentan según lo esperado (CR > 1.96), todos los parámetros individuales no estandarizados y estandarizados, así como las covarianzas exhiben el signo y el tamaño adecuados y son todos significativos. Por lo tanto los pesos de regresión estandarizados son buenos indicadores de “Afrontamiento Familiar”, mientras que los coeficientes de correlación múltiple al cuadrado muestran que las variables están explicando una aceptable cantidad de varianza atribuible al factor común. Asimismo, las varianzas que exhiben valores bajos, confirman la exactitud de la estimación.
Con relación al ajuste global del modelo, el indicador CMIN permite rechazar la hipótesis de un modelo perfectamente ajustado; no obstante, otros indicadores de ajuste le otorgan credibilidad al modelo. Por ejemplo, el RMR ofrece un .071. Asimismo, el GFI alcanza a .950 y el CFI a .951, ambos muy próximos a 1.0. Finalmente el RMSEA presentó un valor de .047, muy adecuado. De aquí se desprende la conclusión que destaca el modelo como lo suficientemente adecuado como para medir la variable Afrontamiento Familiar.

Conducta Prosocial. La escala que mide prosocialidad está conformada por 12 ítems, ha sido desarrollada por Centro Interuniversitario per la Ricerca Sulla Genesi e Sullo Sviluppo Delle Motivazioni Prosociali e Antisociali, en el que participan las universidades de Roma (La Sapienza), de Padua, Católica del Sagrado Corazón, la Universidad de Nápoles y la Universidad de Florencia, y adaptada y validada en Bolivia por la Universidad Católica Boliviana.

Su análisis validatorio, como en todos los casos anteriores, se realizó en la misma muestra de 304 sujetos jóvenes de entre los 13 y los 21 años de edad, con una media de edad de 16.37. El análisis exploratorio reportó una distribución normal con indicadores “M” (Huber = 56.0124; Tukey Biweight = 56.2750; Hampel = 56.1450; Andrews’ Wave = 56.2796) muy próximos a la media recortada de la distribución (56.1001). Asimismo, la prueba de normalidad Kolmogorov-Smirnov no rechazó la hipótesis nula de la normalidad de la distribución (K-S = .042, p=.200).

El análisis factorial exploratorio recomendó una escala monofactorial, la que se encuentra en condiciones de explicar el 41.065 por ciento de la varianza total. Asimismo, el Alfa de Cronbach arrojó una confiabilidad de .902.

El modelado con el AFC, presentó los siguientes datos:

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of distinct sample moments:</td>
<td>78</td>
</tr>
<tr>
<td>Number of distinct parameters to be estimated:</td>
<td>26</td>
</tr>
<tr>
<td>Degrees of freedom (78 - 26):</td>
<td>52</td>
</tr>
<tr>
<td>Result (Default model)</td>
<td></td>
</tr>
<tr>
<td>Minimum was achieved</td>
<td></td>
</tr>
<tr>
<td>Chi-square</td>
<td>94.215</td>
</tr>
<tr>
<td>Degrees of freedom</td>
<td>52</td>
</tr>
<tr>
<td>Probability level</td>
<td>.000</td>
</tr>
</tbody>
</table>

2 Si bien el valor esperado del indicador debe ser menor a .05, el exhibido por el modelo no es de ninguna manera despreciable.

CAPÍTULO VIII
ANÁLISIS DE LA VALIDEZ DE UN MODELO MULTICAUSAL
Figura 8.6. Estructura del modelo métrico de la escala que mide el constructo "Conducta Prosocial"

Como en todos los casos anteriores, los estimados estadísticos estandarizados y no estandarizados del modelo presentaron un buen aspecto. No se registró ningún indicador fuera de lugar y todos sin excepción resultaron significativos. En consecuencia, también los indicadores de ajuste global del modelo fueron muy aceptables: A pesar de que los valores CMIN (94.215, con 52 grados de libertad y un nivel de significación de $p = .000$) obligaron el no rechazo la hipótesis nula de un buen ajuste del modelo, los demás indicadores hacen suponer un relativamente buen ajuste general. Así, el RMR arrojó un .047, mientras que el GFI ofreció un .951, muy próximo a 1.0. Asimismo, los valores de NFI=.931; RFI= .913; IFI= .968; TLI= .959 y CFI= .969 se muestran según lo esperado y el RMSEA está también aceptable (.052).

Por lo tanto, podemos asumir que la escala de conducta prosocial se encuentra en buena forma para medir el constructo respectivo.

Depresión. La escala que mide Depresión está conformada por 8 ítems y es otro instrumento desarrollado por Centro Interuniversitario per la Ricerca Sulla Génesi e Sullo Sviluppo Delle
Motivazioni Prosociali e Antisociali, y originalmente adaptado y validado en Bolivia por la Universidad Católica Boliviana en una muestra de 460 estudiantes de entre 15 y 19 años de edad. Posteriormente, esta escala fue modificada y sometida nuevamente a proceso validatorio con una muestra diferente de 304 estudiantes entre los 13 y los 21 años. A continuación se exponen las cifras confrontadas.

La exploración de los datos informa que se trata de una distribución muy próxima a la normal, tal como lo confirma la coincidencia entre los indicadores "M" (Huber = 33.4956; Tukey Biweight = 33.1589; Hampel = 33.4215; Andrews’ Wave = 33.1480) y la media recortada (33.5534), así como los valores de asimetría y curtosis (.347 y .262, respectivamente).

El análisis factorial exploratorio recomendó una estructura monofactorial con el 41.09 por ciento de la varianza total explicada y un coeficiente de confiabilidad Alfa de .760.

Por su parte, el Análisis Factorial Confirmatorio (AFC), presentó los siguientes indicadores:

- Number of distinct sample moments: 36
- Number of distinct parameters to be estimated: 18
- Degrees of freedom (36 - 18): 18

Result (Default model)
- Minimum was achieved
- Chi-square = 34.304
- Degrees of freedom = 18
- Probability level = .012

Los estimados iniciales del modelo muestran un relativamente buen comportamiento de los indicadores básicos individuales: los valores de razón crítica (o CR) se presentan según lo esperado (CR > 1.96), todos los parámetros no estandarizados y estandarizados, así como las covarianzas exhiben el signo y el tamaño adecuados y son todos significativos. Por lo tanto los pesos de regresión estandarizados son buenos indicadores de "Depresión", mientras que los coeficientes de correlación múltiple al cuadrado muestran que las variables están explicando una aceptable cantidad de varianza atribuible al factor común. Asimismo, las varianzas que exhiben valores bajos, confirman la exactitud de la estimación.

CAPÍTULO VIII
ANÁLISIS DE LA VALIDEZ DE UN MODELO MULTICAUSAL
Con relación al ajuste global del modelo, el indicador CMIN (34.304 con 18 grados de libertad y p = .012) obliga a rechazar la hipótesis de un modelo perfectamente ajustado; no obstante, otros indicadores alientan su ajuste adecuado. Por ejemplo, el RMR ofrece un .036 y el GFI alcanza a un .973. Los indicadores de Comparación de Línea de Base, son también interesantes (NFI = .934, RFI = .897, IFI = .967, TLI = .948 y CFI = .967) todos muy próximos a 1.0. Finalmente el RMSEA presentó un valor de .055, que se considera suficiente. De aquí se desprende la conclusión que destaca el modelo como lo suficientemente adecuado como para medir el constructo Depresión.

AFC del Modelo Instrumental

Una vez llevado a cabo el AFC de cada escala y obtenida su validez factorial, corresponde llevar a cabo el AFC del modelo como un todo. Al hacerlo, surgen normalmente una serie de requerimientos estadísticos que obligan a ajustar nuevamente cada escala en el contexto del modelo. El resultado final se muestra en la Figura 8.8.

Para producir el modelo expresado en dicha figura, utilice el AMOS Graphics, y dibuje su estructura tal como fuera descrito en el capítulo anterior, incorporando en ella todas las escalas y los constructos que hipotéticamente proyectan medir. Asimismo calcule los estimados, incorpore los parámetros forzados y el ajuste del modelo tal como se indicó páginas atrás.
Figura 8.8. Estructura general del modelo de medida, sugerida por el AFC
Debe reconocerse que a pesar de que los estimados para cada escala exhibieron muy buenas estadísticas en prácticamente todos los casos, los cálculos arrojados en el CFA del modelo, no merecieron similares resultados. En primer lugar, los estimados preliminares del modelo recomendaron la eliminación de la escala de "Empatía Familiar" que demostró inconsistencias en el marco general del modelo. El cálculo se realizó en base a los siguientes parámetros:

Number of distinct sample moments: 1378
Number of distinct parameters to be estimated: 124
Degrees of freedom (1378 - 124): 1254

Result (Default model)
Minimum was achieved
Chi-square = 1941.865
Degrees of freedom = 1254
Probability level = .000

El valor de la Chi Cuadrado (X^2) establece con mucha claridad que debemos rechazar la Ho de buen ajuste del modelo. Sin embargo debe señalarse que los estimados de cada elemento del modelo, se comportaron de manera adecuada: las razones críticas (CR) y los errores estándar se mantuvieron invariablemente dentro de los márgenes esperados de signo y tamaño.

Los pesos de regresión estandarizados son buenos indicadores para el modelo, mientras que los coeficientes de correlación múltiple al cuadrado muestran que las variables están explicando una aceptable cantidad de varianza común. Es importante también señalar que en la verificación de los "Residuos", dato al que se accede eligiendo del menú la opción "View" del cuadro inicial de diálogo de AMOS y pinchando la alternativa "Analysis Properties" (Propiedades de Análisis), en su pestaña "Output" (ver Figura 8.9).

Después de correr el programa y consultar con los resultados mediante o a través del icono "View Text" (Ver Texto) y solicitar el desplegue de "Estimados" (Estimates), la ventana de "Output" desplegará la matriz que se exhibe en la Figura 8.10. Estos valores corresponden a los residuos estandarizados de las covarianzas y los valores por encima de 2.5 son considerados demasiado altos y son indicadores adversos de la consistencia del modelo (Jöreskog y Sörbom, 1993). Nuestro ejemplo no arrojó ningún valor residual por encima de 2.5, lo que indica estimados aceptables.
Figura 8.9. Cuadro de diálogo que permite establecer el tipo de producto estadístico deseado

Figura 8.10. Cuadro de diálogo del AMOS desplegando los residuos estandarizados de las covarianzas

CAPÍTULO VIII
ANÁLISIS DE LA VALIDEZ DE UN MODELO MULTICAUSAL
Las cifras de ajuste global del modelo ejemplificado fueron las siguientes:

a) El indicador CMIN corresponde desde luego, al valor de la X^2 ya descrito, que como ya comentamos, obligan el rechazo de la hipótesis nula de buen ajuste del modelo (1941. 865, con 1254 grados de libertad y $p = .000$).

b) El Indicador “Root Mean Square Residual” (RMR) es un tanto mayor a lo esperado (.085) y el Global Fit Index (GFI) de .804, si bien se aproxima al valor óptimo de 1.0, podríamos ser más exiguientes en materia de ajuste.

c) Asimismo, un “Comparative Fit Index” (CFI) de .884 nos comunica que el modelo no se ajusta según lo esperado, pues deberíamos esperar un valor aún más próximo a 1.0.

d) Pese a la debilidad de estos indicadores, el “Root Mean Square Error of Approximation” (RMSEA), considerado como el indicador de mayor sensibilidad para detectar las contraindicaciones de un modelo, arrojó la cifra muy alentadora de .043.

Al cabo de obtener los resultados en forma de estimados e indicadores del grado de ajuste del modelo, es posible que el investigador quiera llevar a cabo ciertas operaciones adicionales para mejorar el ajuste global de su modelo. Esto puede ocurrir acudiendo a la Modificación de Indices (Modification Indices o MI). Es posible acceder a esta función a partir del cuadro de diálogo principal del programa AMOS, eligiendo del menú la opción “View” y pinchando la alternativa “Analysis Properties” (Propiedades de Análisis), tal como se muestra en la Figura 8.11.

Esta operación desplegará la ventana que se muestra a continuación en la Figura 8.12. En ella, asegúrese de marcar la opción “Modification Indices”, fijando el umbral correspondiente. Esto asegurará que en el “AMOS Output” se produzca el listado de MI para que pueda ser inspeccionado con el propósito de buscar mejorar el ajuste global del modelo.
Figura 8.11. Cuadro de diálogo principal de AMOS para acceder a Propiedades de Análisis

Figura 8.12. Cuadro de diálogo que permite acceder a la sección de Productos (Output) y luego a Modificación de Indices

CAPÍTULO VIII
ANÁLISIS DE LA VALIDEZ DE UN MODELO MULTICAUSAL
El programa producirá el listado de los Índices que se exhibe en la Figura 8.13, siempre y cuando se hayan cumplido con los requisitos formales del modelo estructural (ver capítulo VII).

Figura 8.13. Cuadro de diálogo que despliega los valores de Modificación de Índices para Varianzas, Covarianzas y Pesos de Regresión

En dichos listados se pueden apreciar las sugerencias del programa para mejorar el ajuste del modelo produciendo una o más covarianzas y nuevas relaciones causales en los pesos de regresión que excedan el valor del umbral. Desde luego que el "reajuste" del modelo es una decisión que compete únicamente al investigador que será, en última instancia, quien juzgue la pertinencia de la reconfiguración del modelo. Byrne (2010) sugiere al respecto que la decisión para incluir o no un nuevo parámetro en el modelo aceptando las sugerencias de MI dependería de tres aspectos: de si el nuevo parámetro añade o no significado al modelo en su conjunto, de si el modelo en general presenta un relativamente buen ajuste; y si el valor del Parámetro Esperado de Cambio (Expected Parameter Change o EPC), que acompaña al MI en el listado, es lo suficientemente relevante.

 Nótese que en el ejemplo no existen insinuaciones claras para generar nuevas covarianza, mientras que en el listado de los pesos de regresión, se señala que un nuevo vínculo entre AF3a y Sv1i, podría mejorar el ajuste global del modelo. No existen sugerencias
MI para las varianzas. Como esta relación carece de interés en la lógica conceptual del modelo, se desestimó la recomendación. En resumen, contamos con un modelo relativamente bien ajustado como lo establece el indicador RMSEA, aunque con algunas debilidades expresadas por otros indicadores globales de ajuste, principalmente por RMR, GFI y CFI. Esta información debería motivar al investigador a ensayar ajustes adicionales del modelo hasta mejorar los mencionados indicadores que se encuentran aún fuera del estándar recomendable.

Validez del Modelo Multicausal

Una vez establecida la validez del modelo métrico a través del AFC, ya estamos listos para ensayar la validez del modelo hipotético, explicativo y multicausal. Para poder hacerlo, en primer lugar debemos esquematizar el modelo tal como se muestra en la Figura 8.14, cuidando de establecer claras relaciones causales entre los factores no observables que lo componen y covarianzas entre las variables exógenas.

Al cabo de correr el programa, (operación que se completa pulsando la opción “Analizar” (Analyze) del cuadro de diálogo principal del AMOS, escogiendo a continuación “Calcular Estimados” (Calculate Estimates). El programa desplegará los resultados siempre y cuando se hayan cumplido rigurosamente con todos los requisitos de estructura y parametrización del modelo. Recuerdese que la señal de que todo está en orden es la iluminación del ícono correspondiente a la “Vista de Resultados en el Diagrama de Ruta” (View the Output Path Diagram), ubicado en la parte superior de la segunda columna del cuadro de diálogo principal (ver Figura 8.15). De no iluminarse dicho ícono, se recomienda revisar cuidadosamente el modelo constatando la presencia de todos y cada uno de los parámetros requeridos para el análisis del mismo.

Antes de revisar los estimados, es aconsejable explorar las notas descriptivas del modelo ingresando a la opción de “Notas para el Modelo” (Notes for Model) de la sección Output del AMOS, a la que se ingresa pulsando el ícono “Ver Texto” (View Text) ubicado en la primera columna del cuadro de diálogo principal.

Notas para el Modelo:

- Number of distinct sample moments: 1378
- Number of distinct parameters to be estimated: 121
- Degrees of freedom (1378 - 121): 1257

CAPÍTULO VIII

ANÁLISIS DE LA VALIDEZ DE UN MODELO MULTICAUSAL
Resultado (modelo por defecto)
Mínimo conseguido
Chi-cuadrado = 1957.153
Grados de libertad = 1257
Nivel de probabilidad = .000

Figura 8.14. Representación gráfica de la estructura general del modelo teórico, incluyendo sus componentes, parámetros y estimados estandarizados

CAPÍTULO VIII
ANÁLISIS DE LA VALIDEZ DE UN MODELO MULTICAUSAL
Aquí, los datos relevantes son: la muestra de momentos (sample moments), el número de parámetros estimados por el modelo y los grados de libertad con que se calcula el valor de la X^2. Asimismo es relevante el valor de la X^2 obtenido y su probabilidad, así como la sentencia de que el mínimo fuera logrado (Minimum was Achieved), señalándose que el programa ha logrado una solución convergente para el modelo.

Resulta también importante tener a la vista, un resumen de las variables contempladas en el modelo, las endógenas y las exógenas. En nuestro ejemplo:

Variables Endógenas no observables:
- Satisfacción de Vida
- Conducta Prosocial

Variables Exógenas no observables:
- Autoeficacia Filial
- Depresión
- Afrontamiento Familiar
Con esta información preliminar ya podemos pasar a evaluar el modelo causal desde una perspectiva global. Para ello debe irse a la opción de “Ajuste del Modelo” (Model Fit) de la sección Output del AMOS, a la que se ingresa también pulsando el ícono “Ver Texto”.

De entre todos los indicadores que se encuentran disponibles para evaluar el grado de ajuste del modelo, debemos elegir aquellos que mayor información puedan darnos para arribar a conclusiones teóricas relevantes. En primer lugar, tenemos la información proveniente del valor de la Chi Cuadrado ($X^2 = 1957.153; \text{ gl } = 1257, \ p = .000$), este resultado nos dice en primera instancia que el modelo no se ajusta adecuadamente. Sin embargo, debido a que esta medida es muy sensible al tamaño de la muestra, quizá sea conveniente considerar otros indicadores cuyos valores no fluctúen con la cantidad de sujetos involucrados en el estudio. Por lo tanto, Byrne (2010) recomienda considerar el CFI, el RMSEA y el ECVI. Para nuestro ejemplo, dichos indicadores se comportaron de la siguiente manera (ver Tabla 8.1, a continuación):

Tabla 8.1
Indicadores de ajuste global del modelo teórico

Baseline Comparisons

<table>
<thead>
<tr>
<th></th>
<th>Model 1</th>
<th>Model 2</th>
<th>Model 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>.900</td>
<td>.901</td>
<td>.999</td>
</tr>
<tr>
<td>RMSEA</td>
<td>.008</td>
<td>.004</td>
<td>.103</td>
</tr>
<tr>
<td>ECVI</td>
<td>.004</td>
<td>.000</td>
<td>.000</td>
</tr>
<tr>
<td>RMSEA/ECVI</td>
<td>.144</td>
<td>.109</td>
<td>.104</td>
</tr>
</tbody>
</table>

De acuerdo con la tabla, el valor de CFI o Índice de Ajuste Comparativo es de .882. Lo expectable es que dicho indicador
esté por encima de .900; por lo tanto un valor como el conseguido, si bien no es del todo desestimable, deja algunas dudas acerca del ajuste del modelo. Por su parte, el RMSEA o Error de Aproximación Raíz Media Cuadrada, arrojó .043, un valor que al estar en el rango recomendado de < .05 a .08, indica un buen ajuste del modelo. Finalmente el ECVI o Índice de Validación Cruzada Esperada, arrojó para el modelo bajo evaluación, un valor de 7.258. Como este valor es menor que el que presenta el modelo saturado, nuestro modelo muestra mayor potencial para la replicación y por lo mismo mejores condiciones de ajuste.

Con el propósito de mejorar el ajuste del modelo, deberemos revisar, a continuación, las cifras arrojadas por Modificación de Índices (Modification Indices, MI). En esta perspectiva, debe hacerse notar que, como estamos interesados exclusivamente en las relaciones causales del modelo, interesan solamente los indicadores MI entre variables exógenas y endógenas. Sin embargo, como puede advertirse en la Tabla 8.2, no existen requerimientos adicionales de parametrización que puedan ser utilizados como base para mejorar el ajuste del modelo.

Tabla 8.2.

<table>
<thead>
<tr>
<th>Valores de Modificación de Índices para los Pesos de Regresión</th>
</tr>
</thead>
<tbody>
<tr>
<td>MI</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

En efecto, las relaciones demostradas por los pesos de regresión no incluyen factores exógenos ni endógenos y despliegan únicamente parámetros observables que, para nuestro interés, carecen de relevancia. Por lo tanto, tal como fuera planteado el modelo causal, deberemos concluir que la estructura presentada constituye la versión final del MEE. En consecuencia, es procedente acompañar los indicadores de ajuste con las listas
completas de los estimados, tal como se muestran en la Tabla 8.3 expuesta a continuación.

Tabla 8.3.

Estimados producidos para pesos de regresión (estandarizados y no estandarizados), covarianzas y correlaciones, de los factores causales del modelo

<table>
<thead>
<tr>
<th>Pesos de regresión no estandarizados (Unstandarized regression weights)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Satisfacción del Rendimiento</td>
</tr>
<tr>
<td>--------------------------------</td>
</tr>
<tr>
<td>Satisfacción del Rendimiento</td>
</tr>
<tr>
<td>Expresión</td>
</tr>
<tr>
<td>Depresión</td>
</tr>
<tr>
<td>Asertividad</td>
</tr>
<tr>
<td>Falta de Rendimiento</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pesos estandarizados de regresión (Standardized regression weights)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Satisfacción del Rendimiento</td>
</tr>
<tr>
<td>--------------------------------</td>
</tr>
<tr>
<td>Satisfacción del Rendimiento</td>
</tr>
<tr>
<td>Expresión</td>
</tr>
<tr>
<td>Depresión</td>
</tr>
<tr>
<td>Asertividad</td>
</tr>
<tr>
<td>Falta de Rendimiento</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Covarianzas de factor (Factor covariances)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Satisfacción del Rendimiento</td>
</tr>
<tr>
<td>--------------------------------</td>
</tr>
<tr>
<td>Satisfacción del Rendimiento</td>
</tr>
<tr>
<td>Expresión</td>
</tr>
<tr>
<td>Depresión</td>
</tr>
<tr>
<td>Asertividad</td>
</tr>
<tr>
<td>Falta de Rendimiento</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Correlaciones de factor (Factor correlation)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Satisfacción del Rendimiento</td>
</tr>
<tr>
<td>--------------------------------</td>
</tr>
<tr>
<td>Satisfacción del Rendimiento</td>
</tr>
<tr>
<td>Expresión</td>
</tr>
<tr>
<td>Depresión</td>
</tr>
<tr>
<td>Asertividad</td>
</tr>
<tr>
<td>Falta de Rendimiento</td>
</tr>
</tbody>
</table>

*** probabilidad < .000

La Tabla 8.3 resume los estimados del modelo causal exclusivamente referidos a los factores estructurales (causales) previstos. Nótese que absolutamente todos los valores son estadísticamente significativos, según refiere P para los Valores Críticos. El resto de los indicadores no se presentan por razones de espacio, sin embargo todos ellos sin excepción mostraron ser también significativos. En esta sección debe advertirse que la relación entre Depresión -- > Satisfacción de vida es negativa, como era lógico esperar.
Debe advertirse en los estimados estandarizados que todas las cifras refieren valores menores a 1,00 que es lo deseable en este caso, y lo propio se advierte en las covarianzas. Finalmente, es necesario considerar la tabla de Correlaciones Múltiples al Cuadrado o CMC (Square Multiple Correlations) para las variables endógenas, que informan acerca de la proporción de varianza explicada por el predictor. Por ejemplo, para interpretar las CMC de, digamos, Satisfacción de Vida, podemos decir que el 56.9 por ciento de la varianza asociada a Satisfacción de vida, está siendo explicada por tres predictores: Autoeficacia Filial, Afrontamiento Familiar y Depresión. Asimismo, es posible también hilar más fino y señalar que, en relación con Afrontamiento Familiar, el 41.4 por ciento de la varianza explicada se asocia con la variable AF1a. También, en relación con Autoeficacia Filial, el 53 por ciento de la varianza explicada está asociado a la variable predictora AF15, y con respecto a Depresión, el 37.4 por ciento de la varianza corresponde a la variable DEP6 (véase Figura 8.16 que representa el modelo completo y la Tabla 8.4 que se presenta a continuación).

| Tabla 8.4. |
| Correlaciones Múltiples al Cuadrado o CMC que refieren la proporción de varianza explicada por cada factor |

(Square Multiple Correlations)
Por lo tanto, en base a esta nueva información, debe reconfigurarse el esquema de la versión última del modelo de "Bienestar Psicosocial de la Familia", la misma que se presenta en la Figura 8.16.
Figura 8.16. Representación gráfica de la versión última y reconfigurada del modelo teórico de "Bienestar Psicosocial de la Familia"

Consideraciones Finales

Tal como puede verse, el modelo concebido de manera inicial e hipotéticamente, ha tenido que variar su estructura a lo largo de los necesarios ajustes realizados, al momento de la validación de los instrumentos, en el contexto del modelo métrico y finalmente para validarse causalmente. Actualmente tenemos un modelo que recoge los elementos más contundentes de la teoría: ha confirmado la fortaleza del constructo "Autoeficacia Filial" y su condición causal sobre otros factores como el de la "Conducta Prosocial" y la "Satisfacción de Vida". Ha resultado claro también que la "Depresión" condiciona negativamente la satisfacción por la vida y que el "Afrontamiento Familiar" está en posición de explicarla. El modelo debió prescindir del constructo de "Empatia Familiar", pese a sus bien diseñados indicadores, por no haberse podido articular con el modelo métrico global. Finalmente debe decirse que, ahora que se dispone de información relativamente relevante sobre su ajuste global, el modelo ejemplificado debería explorar con más atención, relaciones causales adicionales, por ejemplo, sobre las posibilidades explicativas del afrontamiento familiar sobre la conducta prosocial y de esta última sobre la satisfacción de vida.

A modo de cierre del presente capítulo, me gustaría reflejar un par de consideraciones realizadas por Byrne (2010), que por su importancia no deben ser pasadas por alto. En primer lugar, la autora, haciéndose eco de trabajos previos (Sobel y Bohrnstedt, 1985; Wheaton, 1987, entre otros), recomienda no perder de vista que la obtención de buenos indicadores de ajuste, no colma todas
las necesidades de un modelo y que el progreso científico puede ser obstaculizado si los coeficientes de ajuste son considerados como los únicos criterios para juzgar su adecuación. Los indicadores de ajuste no garantizan por sí mismos la adecuación del modelo y puede ser que pese a sus buenos indicadores de ajuste, sean aún insuficientes para representar una realidad compleja. Se dice también que el ajuste nos informa que el modelo en cuestión es solo plausible, el juicio definitivo es solo responsabilidad del investigador y debe depender de aspectos teóricos y matemáticos.

En segundo lugar, recomienda que el investigador sepa establecer el momento oportuno para dejar de intentar nuevos ajustes del modelo. Algunos criterios para ello son: un completo conocimiento del contexto teórico en que se inscribe el modelo; buenos y variados criterios estadísticos para evaluar los índices de ajuste, y no descuidar el concepto de parsimonia, es decir que el mejor modelo es también el más simple y el más claramente formulado. Asimismo, el investigador no debe sucumbir a la tentación de incorporar demasiados parámetros para mejorar el ajuste de su modelo; esto podría hacer que su estructura se vuelva demasiado trivial y que sea imposible de replicar en el contexto de validaciones futuras.

Arias, B. (2008). Desarrollo de un ejemplo de análisis factorial confirmatorio con LISREL, AMOS y SAS. Seminario de actualización en investigación sobre discapacidad, SAID.

RESEÑA DEL LIBRO

Análisis Multivariado en la Investigación Psicológica: Modelado Pred dictivo y Causal con SPSS y AMOS, es un libro de texto dirigido a los investigadores de la psicología, interesados en el análisis de procesos multicausales, aunque puede interesar también a especialistas de otras disciplinas afines con intereses similares. Es un libro que busca familiarizar al estudiante con una serie de técnicas cuantitativas que tienen propósitos inferenciales en la lógica de la múltiple causalidad.

El libro minimiza la necesidad de acudir a complejas formas matemáticas o estadísticas para entender los principios que subyacen a las diferentes técnicas de modelado. A lo largo de la obra, el autor brinda ejemplos concretos rescatados de su propio trabajo investigativo, apoyándose en el empleo de los conocidos paquetes estadísticos: SPSS y AMOS.