Repositorio UCB

GROUNDWATER RECHARGE AREAS MAPPING IN HIGH-ALTITUDE ANDEAN MOUNTAINS THROUGH MACHINE LEARNING ALGORITHMS

Mostrar el registro sencillo del ítem

dc.contributor.author Aliaga Medrano, Evelyn
dc.contributor.author Soria Cespedes, Freddy
dc.contributor.author d'Abzac, Paul
dc.date.accessioned 2024-11-22T21:39:17Z
dc.date.available 2024-11-22T21:39:17Z
dc.date.issued 2023-07-10
dc.identifier.other http://dspace.aeipro.com/xmlui/bitstream/handle/123456789/3427/AT04-024_23.pdf?sequence=1&isAllowed=y
dc.identifier.uri http://repositorio.ucb.edu.bo/xmlui/handle/20.500.12771/1092
dc.description.abstract The high-altitude wetlands in the Central Andes are unique ecosystems located above 4000 masl in the Bolivian Altiplano. The analysis and classification of spatial information is a crucial step in the identification of wetlands in scarped topography. The objective of this study was to test machine learning algorithms to map Andean wetlands. The first step consisted on applying the machine learning algorithms Least Absolute Shrinkage and Selection Operator LASSO and Receiver Operating Characteristic ROC for the sensitivity analysis. Then, there were compared the Random Forest Regressor RFR, Support Vector Regressor SVR, and Multivariate Adaptative Regression Splines MARS regression supervised machine learning algorithms for the wetlands mapping. Results were validated by Google Earth satellite images and a regression coefficient. The RFR showed good results for areas with slopes of 0 - 32 degrees; the SVR showed good performance for areas with slopes of 44 - 76 degrees, while for areas with slopes of 0 - 12 degrees its performance was inaccurate. The application of the MARS showed trivial results compared to those obtained by the first two algorithms; some results were good for certain areas, areas with slopes of 0 - 12 degrees and 44 - 77 degrees were erroneously flagged. es_ES
dc.language.iso en es_ES
dc.publisher Universidad Católica Boliviana "'San Pablo". Programa VLIR - UOS. es_ES
dc.subject andean wetlands es_ES
dc.subject Random Forest Regressor es_ES
dc.subject Support Vector Regressor es_ES
dc.subject Multivariate Adaptative Regression Splines regression es_ES
dc.subject supervised machine learning algorithms es_ES
dc.title GROUNDWATER RECHARGE AREAS MAPPING IN HIGH-ALTITUDE ANDEAN MOUNTAINS THROUGH MACHINE LEARNING ALGORITHMS es_ES
dc.title.alternative DESEMPEÑO DE ALGORITMOS DE APRENDIZAJE AUTOMÁTICO PARA EL MAPEO DE ÁREAS DE RECARGA SUBTERRÁNEA EN ZONAS ANDINAS DE BOLIVIA es_ES
dc.type Article es_ES


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Buscar en DSpace


Búsqueda avanzada

Listar

Mi cuenta